[发明专利]基于多特征和多分类器的骨髓细胞分类识别方法及系统有效
申请号: | 202110536794.3 | 申请日: | 2021-05-17 |
公开(公告)号: | CN113177927B | 公开(公告)日: | 2022-12-09 |
发明(设计)人: | 祖建;葛飞;王雯娟;吴晓明 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/40;G06T7/90;G06V10/44;G06V10/764;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 高博 |
地址: | 710049 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 特征 分类 骨髓细胞 识别 方法 系统 | ||
1.基于多特征和多分类器的骨髓细胞分类识别方法,其特征在于,包括以下步骤:
S1、根据骨髓细胞原始图像建立原始图像数据集;对原始图像数据集进行定位、分割和数据增强处理,得到骨髓细胞图像数据集;
S2、构建VGG16,DenseNet121和ResNet50迁移分类器,并用步骤S1中的骨髓细胞图像数据集进行训练和测试,得到三种迁移分类器的测试准确率;
S3、从步骤S1得到的骨髓细胞图像数据集中的图像提取纹理特征LBP,形状特征HOG和颜色特征HSV;利用加权图像融合算法对提取的纹理特征LBP,形状特征HOG和颜色特征HSV特征图像进行融合得到特征融合图像,构建特征融合图像数据集,利用步骤S2构建的VGG16,DenseNet121和ResNet50迁移分类器对特征融合图像数据集进行训练并测试,得到每个迁移分类器中测试准确率最高的特征融合图像;
S4、利用Keras模型融合算法对步骤S2构建的VGG16,DenseNet121和ResNet50迁移分类器进行融合得到4个融合分类器,利用4个融合分类器对步骤S3得到的测试准确率最高的特征融合图像进行训练和测试,确定测试准确率最高的多特征多分类器融合模型;利用准确率最高的多特征多分类器融合模型对细胞图像进行分类识别。
2.根据权利要求1所述的方法,其特征在于,步骤S1具体为:
S101、获取骨髓细胞数据集BCI和ASDML,建立骨髓细胞数据集;
S102、从ASDML数据集和BCI数据集中选择嗜酸性粒细胞,淋巴细胞,单核细胞,原始粒细胞和嗜中性粒细胞作为原始骨髓细胞数据集;
S103、骨髓细胞定位和分割;
S104、对步骤S103分割后的骨髓细胞图像进行中值滤波处理;
S105、对步骤S104滤波后的骨髓细胞图像进行去雾处理;
S106、采用图像翻转,图像旋转和图像平移操作对步骤S105去雾处理后的骨髓细胞图像进行扩增,构建骨髓细胞图像数据集。
3.根据权利要求1所述的方法,其特征在于,步骤S103具体为:
S1031、利用LabelImg标注软件步骤S102中50%的对骨髓细胞进行标注,得到标注文件XML;
S1032、利用YOLOv3目标检测网络对步骤S1031得到的标注文件XML进行训练,得到YOLOv3训练模型;
S1033、利用步骤S1032得到的YOLOv3训练模型对步骤S102中所有的骨髓细胞图像数据集进行目标检测和定位,得到目标定位的候选框及四个像素点如下:左上角像素点(x1,y1),右上角像素点(x2,y1),左下角像素点(x1,y2),右下角像素点(x2,y2);
S1034、对步骤S1033得到的四个像素点进行计算x1-x2|*|y1-y2|并划分出候选框之间的区域,最终将细胞从整个图像中分割出来,得到分割骨髓细胞图像。
4.根据权利要求1所述的方法,其特征在于,步骤S2具体为:
S201、构建VGG16,DenseNet121,ResNet50迁移分类器,并采用冻结和训练策略,分别冻结VGG16,DenseNet121,ResNet50迁移分类器网络的前面层数,并将公开自然图像数据集ImageNet训练的VGG16,DenseNet121,ResNet50迁移分类器网络参数和权重迁移到三个迁移分类器网络中,最后训练新设置的网络层数,得到训练好的三个单分类器模型;
S202、利用步骤S201训练好的三个单分类器模型对步骤S1中骨髓细胞图像数据集中的测试集进行测试,采用准确率,精确率,召回率和F1分数分类指标对三个单分类器模型的测试结果进行评价。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110536794.3/1.html,转载请声明来源钻瓜专利网。