[发明专利]基于计算机视觉的光伏电池板镀膜脱落预测方法及系统在审
申请号: | 202110549273.1 | 申请日: | 2021-05-20 |
公开(公告)号: | CN113177933A | 公开(公告)日: | 2021-07-27 |
发明(设计)人: | 梁学明;胡孟春 | 申请(专利权)人: | 河南农道智能科技有限公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06T7/13;G06T7/62 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 450000 河南省郑州市自贸试验区*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 计算机 视觉 电池板 镀膜 脱落 预测 方法 系统 | ||
本发明涉及计算机视觉技术领域,具体涉及一种基于计算机视觉的光伏电池板镀膜脱落预测方法及系统。该方法包括:在一个检测周期的初始时刻和终止时刻采集光伏电池板的图像,获得初始图像和终止图像。通过初始图像获得镀膜脱落区域。通过初始图像和终止图像获得光伏电池板的灰尘累积度。以灰尘累积度和镀膜脱落区域面积获得光伏电池板的灰尘残留度。通过下一次检测周期获得的图像信息获得当前镀膜脱落增长区域。通过当前镀膜脱落区域增长区域、灰尘累积度和灰尘残留度预测未来的镀膜脱落增长区域。本发明通过采集的图像数据实现了对光伏电池板上的镀膜脱落的预测,提高了光伏电站运行效率。
技术领域
本发明涉及计算机视觉技术领域,具体涉及一种基于计算机视觉的光伏电池板镀膜脱落预测方法及系统。
背景技术
随着清洁能源的大力发展和政府的支持,光伏电池板成为了清洁能源的主流获取材料。光伏电池板玻璃表面的镀膜层一般在光伏电站运行两三年后会发生脱落,而且在脱落过程中,因为环境等因素的影响脱落为不均匀脱落。这种玻璃表面镀膜层的脱落是不可逆的,会影响光伏电池板玻璃透光率,降低组件功率,影响整个方针的发电量。而且这种衰减一般在光伏电站运行的前几年还很难根据发电量看出来,因为其衰减率和辐照波动性误差不大。
在镀膜脱落过程中,玻璃上会因为环境问题覆盖上许多灰尘,灰尘中的杂质和玻璃中的钠盐对镀膜形成损伤,导致镀膜脱落。镀膜脱落后的区域由于缺少镀膜的保护以及表面的不平整,会更加容易累积灰尘且难以清洗,进而继续影响镀膜的脱落。
现有的光学器件检测光伏电池板玻璃镀膜缺陷往往会因为光伏电池板在使用过程中的累积的灰尘导致误检。如果不及时检测出严重镀膜脱落的光伏电池板,会影响到光伏电站的工作效率,降低光伏电站的收益。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种基于计算机视觉的光伏电池板镀膜脱落预测方法及系统,所采用的技术方案具体如下:
本发明提出了一种基于计算机视觉的光伏电池板镀膜脱落预测方法,所述方法包括:
在预设的检测周期的初始时刻和终止时刻获得光伏电池板的初始图像和终止图像;
将所述初始图像送入预先训练好的分割网络中,获得镀膜脱落区域;
以所述镀膜脱落区域在所述初始图像中的平均灰度与标准光伏电池板的平均灰度差异作为第一灰度差异;获得所述镀膜脱落区域在所述终止图像中的第二灰度差异;以所述第二灰度差异与所述第一灰度差异的比值作为灰尘累积度;
获取所述光伏电池板清理后的灰尘残留度;所述灰尘残留度通过所述灰尘累积度和所述镀膜脱落区域面积获得;
获得所述镀膜脱落区域的第一边缘;在下一次所述检测周期后获得第二边缘;以所述第一边缘和所述第二边缘包围的区域作为所述当前镀膜脱落增长区域;
通过所述当前镀膜脱落增长区域、所述灰尘累积度和所述灰尘残留度构建预测未来镀膜脱落增长区域。
进一步地,所述灰尘残留度通过所述灰尘累积度和所述镀膜脱落区域面积获得包括:
当所述镀膜脱落区域面积小于等于第一面积阈值时,所述灰尘残留度等于所述灰尘累积度;当所述镀膜脱落区域面积大于等于第二面积阈值时,所述灰尘残留度等于零;所述第二面积阈值大于所述第一面积阈值。
进一步地,获得所述镀膜脱落区域面积后还包括:若所述镀膜脱落区域面积大于预设第三面积阈值时,则认定光伏电池板损坏;所述第三面积阈值大于所述第二面积阈值。
进一步地,通过所述灰尘累积度和所述镀膜脱落区域面积获得灰尘残留度具体包括:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河南农道智能科技有限公司,未经河南农道智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110549273.1/2.html,转载请声明来源钻瓜专利网。