[发明专利]一种基于自监督学习的电力线图像实时分割方法有效

专利信息
申请号: 202110549637.6 申请日: 2021-05-20
公开(公告)号: CN113610858B 公开(公告)日: 2022-03-29
发明(设计)人: 陈梅林;闫云凤;齐冬莲 申请(专利权)人: 浙江大学
主分类号: G06T7/11 分类号: G06T7/11;G06T7/187;G06T7/194;G06N3/04;G06N3/08;G06T5/00;G06T5/50
代理公司: 北京睿智保诚专利代理事务所(普通合伙) 11732 代理人: 周新楣
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 监督 学习 电力线 图像 实时 分割 方法
【权利要求书】:

1.一种基于自监督学习的电力线图像实时分割方法,其特征在于方法包括:

1)区域分离:

将同一个批次的输入电力线样本图像集合Batch及输入电力线样本图像集合Batch对应的电力线样本图像掩膜集合BatchMask输入到区域生长算法,经区域生长算法处理获得每幅输入电力线样本图像中每条电力线所对应的单条电力线子图像及其对应的单条电力线掩膜,由所有输入电力线样本图像的单条电力线子图像构成了电力线子图像集合Batch',由所有输入电力线样本图像的单条电力线子图像的单条电力线掩膜构成了单条电力线掩膜集合BatchMask';

2)随机组合:

2.1)电力线子图像集合Batch'中的每一幅电力线子图像与其在单条电力线掩膜集合BatchMask'中对应的单条电力线掩膜构成了一对单条电力线图像对,随机从电力线子图像集合Batch'和单条电力线掩膜集合BatchMask'中取出至少一对单条电力线图像对组合起来,并与一张随机背景图片结合生成电力线随机背景融合图像和电力线随机背景掩膜;

2.2)重复步骤2.1)进行多次,各次随机取出至少一对单条电力线图像对与不同的随机背景图片进行结合,从而获得电力线随机背景融合图像集合Batch”和电力线随机背景掩膜集合BatchMask”;

3)图像修复:

针对电力线随机背景融合图像集合Batch”和电力线随机背景掩膜集合BatchMask”中的每一张电力线随机背景掩膜进行随机次数和随机步数的不重复区域生长获得图像修复区域,接着对每幅电力线随机背景掩膜生长得到的图像修复区域共同形成一幅修复掩膜,将修复掩膜输入到图像修复算法,对修复掩膜对应的电力线随机背景融合图像进行修复填充获得电力线分割图像,电力线随机背景掩膜减去修复掩膜得到最终的电力线分割掩膜,由电力线分割图像和电力线分割掩膜共同构成了电力线分割图像对,由电力线随机背景融合图像集合Batch”中的每一张电力图像和其在电力线随机背景掩膜集合BatchMask”中对应的电力线随机背景掩膜生成的每一对电力线分割图像对组成最终电力线图像集合Batch”'和最终电力线掩膜集合BatchMask”';

4)将3)得到的最终电力线图像集合Batch”'和最终电力线掩膜集合BatchMask”'输入到电力线实时分割网络SaSnet进行训练,以训练后的电力线实时分割网络SaSnet对待测的电力线场景图像进行处理,获得预测的分割结果。

2.根据权利要求1所述的一种基于自监督学习的电力线图像实时分割方法,其特征在于:所述的电力线实时分割网络SaSnet主要由输入模块、融合模块、输出模块三部分组成;电力线实时分割网络SaSnet的输入为RGB三通道的彩色图,输入模块是由连续连接的两个第一卷积归一化模块构成,第一卷积归一化模块主要由卷积层、批量归一化层和Relu激活函数依次连接构成,输出统一特征图,通道数为64;融合模块对统一特征图处理生成多个尺度特征图,并且拼接多个尺度特征图,融合其中浅层细节信息和深层语义信息;输出模块主要由一个卷积层、连续两个第一卷积归一化模块依次连接构成;

所述的融合模块包括三个尺度阶段,统一特征图分别输入到三个尺度阶段获得各自的尺度特征图,然后将各个各自的尺度特征图拼接后共同输入到输出模块;第一个尺度阶段是将统一特征图直接输出的处理;第二个尺度阶段主要由步距为2的卷积层、连续两个第一卷积归一化模块、转置卷积层依次连接构成;第三个尺度阶段与第二个尺度阶段基本相同,区别仅在于连续两个第一卷积归一化模块替换为连续两个第二卷积归一化模块,第二卷积归一化模块和第一卷积归一化模块的区别仅在于将卷积层替换为空洞卷积层。

3.根据权利要求1所述的一种基于自监督学习的电力线图像实时分割方法,其特征在于:所述2.1)中,具体是将至少一对单条电力线图像对中的各个电力线子图像均叠加到随机背景图片上获得电力线随机背景融合图像,将对应的单条电力线图像对中的各个单条电力线掩膜进行叠加后获得电力线随机背景掩膜。

4.根据权利要求1所述的一种基于自监督学习的电力线图像实时分割方法,其特征在于:所述步骤1)中的输入为一个批次的图像集合,输出为新的一个批次的图像集合。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110549637.6/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top