[发明专利]一种基于自调整多任务粒子群算法的污水处理过程优化控制方法在审
申请号: | 202110554384.1 | 申请日: | 2021-05-20 |
公开(公告)号: | CN113589684A | 公开(公告)日: | 2021-11-02 |
发明(设计)人: | 韩红桂;白星;侯莹;杨宏燕;乔俊飞 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 刘萍 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 调整 任务 粒子 算法 污水处理 过程 优化 控制 方法 | ||
1.一种基于自调整多任务粒子群算法的污水处理过程优化控制方法,其特征在于,建立基于数据的污水处理过程多任务优化模型,设计基于自调整多任务粒子群算法的优化设定方法,并完成优化设定值跟踪控制,具体包括以下步骤:
(1)基于数据的污水处理过程多任务优化模型设计
污水处理过程多任务优化模型利用数据驱动方法描述优化设定值与出水水质、能耗间的关系,包括基于核函数的目标任务模型和基于多项式回归的辅助任务模型;
建立基于核函数的污水处理过程出水水质和能耗目标任务模型:
其中,f1(t)是t时刻污水处理过程出水水质的目标任务模型,f2(t)是t时刻污水处理过程能耗的目标任务模型;B1(t)是t时刻污水处理过程出水水质模型f1(t)的输出偏移且取值范围为[-2,2],B2(t)是t时刻污水处理过程能耗模型f2(t)的输出偏移且取值范围为[-2,2];W1,z(t)是t时刻污水处理过程出水水质模型第z个核函数的权值且取值范围为[-3,3],W2,z(t)是t时刻污水处理过程能耗模型第z个核函数的权值且取值范围为[-3,3];H1,z(t)是污水处理过程出水水质模型相关的核函数,H2,z(t)是污水处理过程能耗模型相关的核函数:
其中,x(t)=[SNO(t),SO(t)]是t时刻的输入变量,SNO(t)是t时刻的厌氧末端硝态氮浓度且取值范围为[0,2],单位毫克/升;SO(t)是t时刻的好氧末端溶解氧浓度且取值范围为[0,3],单位毫克/升;T是向量或矩阵的转置;c1,z(t)=[c1,z,1(t),c1,z,2(t)]T是t时刻污水处理过程出水水质模型第z个核函数的中心,且c1,z,1(t)和c1,z,2(t)的取值范围均为[-1,1],c2,z(t)=[c2,z,1(t),c2,z,2(t)]T是t时刻污水处理过程能耗模型第z个核函数的中心,且c2,z,1(t)和c2,z,2(t)的取值范围均为[-1,1];σ1,z(t)是t时刻污水处理过程出水水质模型第z个核函数的宽度且取值范围为[0,2],σ2,z(t)是t时刻污水处理过程能耗模型第z个核函数的宽度且取值范围为[0,2];
训练污水处理过程目标任务模型参数c(t)、σ(t)、W(t):
其中,c(t)=[c1,z(t),c2,z(t)]是t时刻污水处理过程目标任务模型核函数的中心,c(t+1)=[c1,z(t+1),c2,z(t+1)]是t+1时刻污水处理过程目标任务模型核函数的中心;σ(t)=[σ1,z(t),σ2,z(t)]是t时刻污水处理过程目标任务模型核函数的宽度,σ(t+1)=[σ1,z(t+1),σ2,z(t+1)]是t+1时刻污水处理过程目标任务模型核函数的宽度;W(t)=[W1,z(t),W2,z(t)]是t时刻污水处理过程目标任务模型的权值,W(t+1)=[W1,z(t+1),W2,z(t+1)]是t+1时刻污水处理过程目标任务模型的权值;α1是污水处理过程目标任务模型核函数中心的学习率且取值范围为[0,1],α2是污水处理过程目标任务模型核函数宽度的学习率且取值范围为[0,1],α3是污水处理过程目标任务模型权值的学习率且取值范围为[0,1];e1u(t)=y1(t)-yu(t)是t时刻污水处理过程目标任务模型的预测误差,y1(t)=[f1(t),f2(t)]是t时刻污水处理过程目标任务模型的输出,yu(t)=[EQ(t),EC(t)]是t时刻污水处理过程的实际输出值,EQ(t)是t时刻污水处理过程的实际出水水质值,EC(t)是t时刻污水处理过程的实际能耗值;
建立基于多项式回归的污水处理过程出水水质和能耗辅助任务模型:
其中,f3(t)是t时刻污水处理过程出水水质的辅助任务模型,f4(t)是t时刻污水处理过程能耗的辅助任务模型;b1(t)是t时刻污水处理过程出水水质模型f3(t)的输出偏移且取值范围为[-2,2],b2(t)是t时刻污水处理过程能耗模型f4(t)的输出偏移且取值范围为[-2,2];A1,q(t)是t时刻污水处理过程出水水质辅助任务模型的第q项系数且取值范围为[-3,3],A2,q(t)是t时刻污水处理过程能耗辅助任务模型的第q项系数且取值范围为[-3,3];
训练污水处理过程辅助任务模型多项式系数A(t):
其中,A(t)=[A1,q(t),A2,q(t)]是t时刻污水处理过程辅助任务模型的多项式系数,A(t+1)=[A1,q(t+1),A2,q(t+1)]是t+1时刻污水处理过程辅助任务模型的多项式系数;α4是污水处理过程辅助任务模型多项式系数的学习率且取值范围为[0,1];e2u(t)=y2(t)-yu(t)是t时刻污水处理过程辅助任务模型的预测误差,y2(t)=[f3(t),f4(t)]是t时刻污水处理过程辅助任务模型的输出;
污水处理过程多任务优化模型:
minimize F(t)=[F1(t),F2(t)] (11)
其中,F(t)是t时刻污水处理过程的多任务优化模型,F1(t)是t时刻污水处理过程的目标任务模型,F2(t)是t时刻污水处理过程的辅助任务模型;
(2)基于自调整多任务粒子群算法的优化设定值求解
利用自调整多任务粒子群算法求解优化设定值,通过目标任务与辅助任务间的知识转移,实现目标任务加速收敛;
①设置多任务粒子群优化过程的总迭代次数为τmax=500、粒子群规模为N=100、任务数为K=2,初始化外部档案库U(0)为空集;
②将数据驱动污水处理过程多任务优化模型作为自调整多任务粒子群优化算法的优化目标:min F(t)=[F1(t),F2(t)];
③对F(t)进行求解,进化将从第1代开始,迭代到第Tmax代时结束,当进化过程处于t时刻的第τ次迭代时,将粒子的位置信息xt(τ)=[SNOt(τ),SOt(τ)]作为输入,计算粒子的适应度和技能因子,按照技能因子将粒子划分到不同的群组中,并对粒子进行适应度排序;
④评价粒子所携带知识的有效性:
其中,Et(τ)是t时刻第τ次迭代的知识有效性;Fmt(τ)=[Fm1t(τ),Fm2t(τ)]是t时刻第τ次迭代第m个粒子的多任务优化适应度,Fm1t(τ)是t时刻第τ次迭代第m个粒子对应的目标任务适应度,Fm2t(τ)是中t时刻第τ次迭代第m个粒子对应的辅助任务适应度;是t时刻第τ次迭代的多任务优化适应度均值,是t时刻第τ次迭代的目标任务适应度均值,是t时刻第τ次迭代的辅助任务适应度均值;Ft(τ)=[F1t(τ),F2t(τ)]是t时刻第τ次迭代的多任务优化适应度,F1t(τ)是t时刻第τ次迭代的目标任务适应度,F2t(τ)是t时刻第τ次迭代的辅助任务适应度;gt(τ)是t时刻第τ次迭代目标任务粒子与辅助任务全局最优粒子的距离;gmt(τ)是t时刻第τ次迭代第m个目标任务粒子与辅助任务全局最优粒子的距离;是t时刻第τ次迭代目标任务粒子与辅助任务全局最优粒子的距离均值;
⑤设计知识转移策略:
其中,P*tg(τ)=[p*tg,1(τ),p*tg,2(τ)]是t时刻第τ次迭代的知识转移项,PtJ(τ)=[ptJ,1(τ),ptJ,2(τ)]是t时刻第τ次迭代的辅助任务全局最优解,PtJ(τ-1)=[ptJ,1(τ),ptJ,2(τ)]是t时刻第τ-1次迭代的辅助任务全局最优解,J是辅助任务帕累托最优解集中知识有效性最高的解序号:
其中,Etj(τ)是辅助任务t时刻第τ次迭代帕累托最优解集中第j个粒子的知识有效性;
粒子速度更新公式:
其中,vti(τ+1)是第i个粒子在t时刻第τ+1次迭代时的速度,vti(τ)是第i个粒子在t时刻第τ次迭代时的速度;xti(τ+1)是第i个粒子在t时刻第τ+1次迭代的位置,xti(τ)是第i个粒子在t时刻第τ次迭代的位置;Pti(τ)是第i个粒子在t时刻第τ次迭代时个体最优位置,Ptg(τ)是在t时刻第τ次迭代时的全局最优位置;ω是惯性权重且取值为0.8;c1是个体经验加速常数且取值为0.25,c2是社会经验加速常数且取值为0.25,c3是知识转移项加速常数且取值为0.25;r1是个体经验随机数且取值范围为[0,1],r2是社会经验随机数且取值范围为[0,1],r3是知识转移项随机数且取值范围为[0,1];
⑥将t时刻第τ次迭代的个体最优位置Pti(τ)与t时刻第τ-1次迭代的档案库Φt(τ-1)的解进行比较,更新t时刻第τ次迭代的档案库Φt(τ):
其中,∪是逻辑关系“并”,是t时刻第τ-1次迭代的档案库中第ι个最优解,是的目标任务适应度,F1(Pti(τ))是Pti(τ)的目标任务适应度;
⑦判断是否停止迭代:若当前迭代次数τ≥τmax,则终止迭代过程并转到步骤⑧,否则,迭代次数τ增大1,并返回步骤③;
⑧在档案库Φt(τmax)中随机选择一个解作为t时刻的优化设定值u*(t)=[S*NO(t),S*O(t)],其中,S*NO(t)是t时刻硝态氮优化设定值,S*O(t)是t时刻溶解氧优化设定值;(3)优化设定值跟踪控制
利用多变量PID控制器对优化设定值进行跟踪控制,调整溶解氧传递系数与内回流量,实现污水处理过程出水水质与能耗的优化控制;
①PID控制器对优化设定值S*NO(t)与S*O(t)进行跟踪控制:
其中,Δu(t)=[ΔQa(t),ΔKLa(t)]T是操作变量矩阵,ΔQa(t)是污水处理内循环流量的变化量,ΔKLa(t)是第五分区氧传递系数的变化量;Kp是比例系数,Hl是积分系数,Hd是微分系数;e(t)=y*(t)-y(t)是t时刻的控制误差,y*(t)=[S*NO(t),S*O(t)]T是t时刻的优化设定值,y(t)=[SNO(t),SO(t)]T是t时刻的实际输出值;
②调整溶解氧传递系数与内回流量:
KLa(t+1)=KLa(t)+ΔKLa(t) (22)
Qa(t+1)=Qa(t)+ΔQa(t) (23)
其中,KLa(t+1)是t+1时刻的溶解氧传递系数;KLa(t)是t时刻的溶解氧传递系数;Qa(t+1)是t+1时刻的内回流量;Qa(t)是t时刻的内回流量;利用变频器调整供氧泵与回流泵的频率,则硝态氮浓度将被调整至S*NO(t),溶解氧浓度将被调整至S*O(t);至此,实现了污水处理过程出水水质与能耗的优化控制。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110554384.1/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种电池包过充85摄氏度环境试验工装
- 下一篇:一种干细胞的制备方法及其应用