[发明专利]基于人工智能的骨龄确定方法、装置以及电子设备在审
申请号: | 202110566880.9 | 申请日: | 2021-05-24 |
公开(公告)号: | CN113436145A | 公开(公告)日: | 2021-09-24 |
发明(设计)人: | 李铁成;贾潇;王子腾;王东;王立威;丁佳;吕晨翀 | 申请(专利权)人: | 北京医准智能科技有限公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06T7/194;G06K9/32;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京乐知新创知识产权代理事务所(普通合伙) 11734 | 代理人: | 张立新 |
地址: | 100083 北京市海淀区学院路*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 人工智能 确定 方法 装置 以及 电子设备 | ||
本申请提供了一种基于人工智能的骨龄确定方法、装置、电子设备及计算机可读存储介质;所述方法包括:确定数字化X射线(DR)图像中的感兴趣区域,所述DR图像包括肢体的骨骼图像;获取所述感兴趣区域的等级评价值;基于所述感兴趣区域的等级评价值,确定所述骨骼图像对应的骨龄。通过本申请,能够快速、准确地确定骨龄。
技术领域
本申请涉及人工智能技术,尤其涉及一种基于人工智能的骨龄确定方法、装置、电子设备及计算机可读存储介质。
背景技术
骨骼年龄(也称为骨龄)比实际年龄更能够反映人们的实际生长发育状况,骨龄可用于表征骨骼发育的不同阶段。骨龄评估在内分泌疾病的诊断、预测成人身高以及评估治疗效果等方面具有关键作用。
相关技术中,骨龄评估的方法至少存在评估准确性差和评估所需时间长的问题。
发明内容
本申请实施例提供一种基于人工智能的骨龄确定方法、装置、电子设备及计算机可读存储介质,能够提高骨龄评估的准确性,减少骨龄评估所需时间。
本申请实施例的技术方案是这样实现的:
第一方面,本申请实施例提供一种基于人工智能的骨龄确定方法,包括:
确定数字化X射线(Digital Radiography,DR)图像中的感兴趣区域,所述DR图像包括肢体的骨骼图像;获取所述感兴趣区域的等级评价值;基于所述感兴趣区域的等级评价值,确定所述骨骼图像对应的骨龄。
在上述方案中,所述确定DR图像中的感兴趣区域,包括:
将所述DR图像输入至第一神经网络模型,利用所述第一神经网络模型对所述骨骼图像中的掌指骨关节进行检测,得到所述掌指骨关节对应的第一感兴趣区域。
在上述方案中,所述确定DR图像中的感兴趣区域之前,所述方法还包括:
生成用于训练所述第一神经网络模型的第一训练样本集合;
获取所述第一训练样本集合中的每个样本的掌指骨关节特征;
以所述掌指骨关节特征为粒度训练所述第一神经网络模型,使得所述第一神经网络模型能够预测掌指骨关节对应的第一感兴趣区域。
在上述方案中,所述确定DR图像中的感兴趣区域,包括:
将所述DR图像输入至第二神经网络模型,利用所述第二神经网络模型对所述骨骼图像中的腕部关节进行分割,得到所述腕部关节对应的第二感兴趣区域。
在上述方案中,所述利用所述第二神经网络模型对所述骨骼图像中的腕部关节进行分割,得到所述腕部关节对应的第二感兴趣区域,包括:
利用所述第二神经网络模型对所述骨骼图像中的腕部关节进行分割,确定包括所述腕部关节的轮廓线;
确定所述轮廓线对应的第一形状最小包围框内的区域为所述第二感兴趣区域。
在上述方案中,所述基于所述骨骼图像确定所述DR图像中的感兴趣区域之前,所述方法还包括:
生成用于训练所述第二神经网络模型的第二训练样本集合;
获取所述第二训练样本集合中的每个样本的腕部关节特征;
以所述腕部关节特征为粒度训练所述第二神经网络模型,使得所述第二神经网络模型能够预测腕部关节对应的第二感兴趣区域。
在上述方案中,所述获取所述感兴趣区域的等级评价值,包括:
将所述感兴趣区域输入至第三神经网络模型,利用所述第三神经网络模型获取所述感兴趣区域对应的掌指骨关节和/或腕部关节的等级评价值;所述等级评价值用于表征所述骨骼图像对应的骨龄。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京医准智能科技有限公司,未经北京医准智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110566880.9/2.html,转载请声明来源钻瓜专利网。