[发明专利]基于多维异构差异分析的故障诊断方法及系统有效

专利信息
申请号: 202110579449.8 申请日: 2021-05-26
公开(公告)号: CN113255771B 公开(公告)日: 2022-07-08
发明(设计)人: 彭涛;彭霞;叶城磊;陶宏伟;阳春华;杨超;陈志文 申请(专利权)人: 中南大学
主分类号: G06K9/62 分类号: G06K9/62;G01D21/02
代理公司: 长沙朕扬知识产权代理事务所(普通合伙) 43213 代理人: 邓宇
地址: 410083 *** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 多维 差异 分析 故障诊断 方法 系统
【说明书】:

发明涉及故障诊断领域,公开一种基于多维异构差异分析的故障诊断方法及系统,以提高系统故障诊断正确率。方法包括:采集系统正常、故障运行下的传感器信号,构建数值型、分布型、时序型3种不同结构特征集;分别对数值型、分布型、时序型的训练特征集与训练特征集之间进行差异度量,并分别对数值型、分布型、时序型的训练特征集与测试特征集之间进行差异度量;根据前述各类型差异度量并结合3种不同结构特征的权重,构建多维异构特征集的synsim综合差异度量矩阵,最后通过k‑近邻分类得到最终的正常/故障类别。

技术领域

本发明涉及故障诊断领域,尤其涉及一种基于多维异构差异分析的故障诊断方法及系统。

背景技术

在现代化工业生产越来越大型化、高速化、自动化,其生产率和自动化程度逐步提高的同时,特别是在轨道交通、航空航天、船舶、流程工业等领域中,设备或系统故障可能造成重大经济损失,甚至导致重大安全事故的发生,因此,现代设备及系统对安全性和可靠性提出越来越高的要求。现代设备大型化、复杂化、智能化发展趋势导致设备发生故障可能性和维修难度增大,对于现代装备的安全性和可靠性而言,设备故障诊断和维护技术显得尤为重要。如何提高故障诊断效率和精度,即时预报警并维护,是现代设备及系统可靠安全运行的重要前提。

基于数据驱动的故障诊断方法通过传感器所获取的历史运行数据,并采用数据挖掘技术获取其中隐含的有用信息,表征设备/系统运行的正常模式/故障模式,以实现故障诊断的目的。由于它无需建立设备/系统复杂的数学或物理模型,因此被广泛应用。在传感器所获取的历史运行数据中,由于运行数据的统计分布规律及演化故障的时间趋势性,充分挖掘被测系统传感器信号的静态数值、统计分布、时序趋势等多维异构特征,能更全面地表征系统运行状态。且在不同运行状态下,不同结构的数据特征对系统运行状态的表征能力各异,有效融合不同结构特征以提高故障诊断正确率。

因此,现需提供一种能有效融合多维异构数据的方法,充分挖掘被测系统传感器信号的静态数值、统计分布、时序趋势等多维异构特征,更全面地表征系统/设备运行状态,提高系统故障诊断正确率。

发明内容

本发明针对上述问题提供了一种基于多维异构差异分析的故障诊断方法及系统,以融合多维异构数据,充分挖掘被测系统传感器信号的静态数值、统计分布、时序趋势等多维异构特征,更全面地表征系统/设备运行状态,提高系统故障诊断正确率。

为实现上述目的,本发明提供了一种基于多维异构差异分析的故障诊断方法,包括以下步骤:

S1:采集系统正常、故障运行下的传感器信号,构建总体采样数据集、训练数据集和测试数据集;

S2:计算数值特征、分布特征、时序特征,分别构建数值型、分布型、时序型3种结构特征集;

S3:分别对数值型、分布型、时序型的训练特征集与训练特征集之间进行差异度量,构建3种不同结构下训练特征集与训练特征集间差异度量矩阵;计算数值型、分布型、时序型3种结构特征在训练特征集上的类内距离和类间距离;获得数值型、分布型、时序型3种不同结构特征的权重;

S4:分别对数值型、分布型、时序型的训练特征集与测试特征集之间进行差异度量,构建3种不同结构下训练特征集与测试特征集间差异度量矩阵;结合3种不同结构特征的权重,构建多维异构特征集的synsim综合差异度量矩阵;

S5:根据所构建多维异构特征集的synsim综合差异度量矩阵,通过k-近邻分类得到最终的正常/故障类别。

为达上述目的,本发明还公开一种基于多维异构差异分析的故障诊断系统,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述方法的步骤。

本发明具有以下有益效果:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110579449.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top