[发明专利]一种视觉感知扰动约束的黑盒深度模型对抗样本生成方法有效
申请号: | 202110669413.9 | 申请日: | 2021-06-17 |
公开(公告)号: | CN113221388B | 公开(公告)日: | 2022-06-28 |
发明(设计)人: | 王亚杰;张全新;武上博;张正;谭毓安;李元章 | 申请(专利权)人: | 北京理工大学 |
主分类号: | G06F30/20 | 分类号: | G06F30/20;G06N3/04;G06N3/08;G06F111/04 |
代理公司: | 北京正阳理工知识产权代理事务所(普通合伙) 11639 | 代理人: | 王松 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 视觉 感知 扰动 约束 黑盒 深度 模型 对抗 样本 生成 方法 | ||
1.一种视觉感知扰动约束的黑盒深度模型对抗样本生成方法,其特征在于,包括以下步骤:
步骤1:初始化对抗样本,将原始图片输入攻击算法,作为当前对抗样本;
步骤2:使用经过训练的ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,分别构建感知相似性实例;
步骤3:选择步骤2构建的其中一个感知相似性实例,使用对抗攻击算法中的对抗损失向当前对抗样本添加扰动;使用感知相似性实例,计算当前对抗样本与原始图片的感知相似性距离,对抗攻击算法使用感知相似性距离优化对抗样本,通过不断迭代更新对抗样本;
具体包括以下步骤:
步骤3.1:使用ResNet50网络,构建感知相似性实例D;
步骤3.2:使用CW对抗攻击算法,作为对抗样本的生成算法;
步骤3.3:将原始图片x作为初始对抗样本x′;
步骤3.4:使用对抗攻击算法的对抗损失函数Ladv,向当前对抗样本x′i中添加扰动p,得到新的当前对抗样本x′i,x′i=x′i+p;
步骤3.5:使用感知相似性实例D,计算当前对抗样本x′i与原始图片x的感知相似性距离Ldist;
步骤3.6:对抗攻击算法使用Ldist作为目标函数优化对抗样本x′i;
步骤3.7:重复步骤3.4至步骤3.6,直到达到目标值或Ldist小于目标值,获得最终对抗样本x′=x′i;
步骤3.8:选择MI-FGSM对抗攻击算法,作为对抗样本的生成算法,重复步骤3.3至步骤3.7,获得最终对抗样本x′;
步骤3.9:选择HopSkipJumpAttack对抗攻击算法,作为对抗样本的生成算法,重复步骤3.3至步骤3.7,获得最终对抗样本x′;
步骤3.10:选择VGG19网络构建感知相似性实例D,重复步骤3.2至步骤3.9;
步骤3.11:选择Inception-v3网络构建感知相似性实例D,重复步骤3.2至步骤3.9;
步骤3.12:选择MobileNet-v2网络构建感知相似性实例D,重复步骤3.2至步骤3.9;
步骤4:将生成的对抗样本输入到相同网络结构和不同网络结构的模型中,计算成功率和转移性;
步骤4.1:使用ResNet50网络构建感知相似性实例,使用CW对抗攻击算法生成的对抗样本,攻击ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,计算成功率和转移性;
步骤4.2:使用ResNet50网络构建感知相似性实例,使用MI-FGSM对抗攻击算法生成的对抗样本,攻击ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,计算成功率和转移性;
步骤4.3:使用ResNet50网络构建感知相似性实例,使用HopSkipJumpAttack对抗攻击算法生成的对抗样本,攻击ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,计算成功率和转移性;
步骤4.4:使用VGG19网络构建感知相似性实例,使用CW对抗攻击算法生成的对抗样本,攻击ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,计算成功率和转移性;
步骤4.5:使用VGG19网络构建感知相似性实例,使用MI-FGSM对抗攻击算法生成的对抗样本,攻击ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,计算成功率和转移性;
步骤4.6:使用VGG19网络构建感知相似性实例,使用HopSkipJumpAttack对抗攻击算法生成的对抗样本,攻击ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,计算成功率和转移性;
步骤4.7:使用Inception-v3网络构建感知相似性实例,使用CW对抗攻击算法生成的对抗样本,攻击ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,计算成功率和转移性;
步骤4.8:使用Inception-v3网络构建感知相似性实例,使用MI-FGSM对抗攻击算法生成的对抗样本,攻击ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,计算成功率和转移性;
步骤4.9:使用Inception-v3网络构建感知相似性实例,使用HopSkipJumpAttack对抗攻击算法生成的对抗样本,攻击ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,计算成功率和转移性;
步骤4.10:使用MobileNet-v2网络构建感知相似性实例,使用CW对抗攻击算法生成的对抗样本,攻击ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,计算成功率和转移性;
步骤4.11:使用MobileNet-v2网络构建感知相似性实例,使用MI-FGSM对抗攻击算法生成的对抗样本,攻击ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,计算成功率和转移性;
步骤4.12:使用MobileNet-v2网络构建感知相似性实例,使用HopSkipJumpAttack对抗攻击算法生成的对抗样本,攻击ResNet-50、VGG19、Inception-v3和MobileNet-v2网络,计算成功率和转移性。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110669413.9/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种计算机网络安全实验室教学装置
- 下一篇:一种微波介质陶瓷材料及其制备方法