[发明专利]一种三七异物视觉实时检测分拣系统及分拣方法有效

专利信息
申请号: 202110686315.6 申请日: 2021-06-21
公开(公告)号: CN113245222B 公开(公告)日: 2022-06-07
发明(设计)人: 王森;杨荣良;陈明方;崔禹;王庆健;林森;陈中平;潘云龙;陈江 申请(专利权)人: 昆明理工大学
主分类号: B07C5/02 分类号: B07C5/02;B07C5/34;B07C5/36;B07B1/28
代理公司: 昆明人从众知识产权代理有限公司 53204 代理人: 陈波
地址: 650093 云*** 国省代码: 云南;53
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 三七 异物 视觉 实时 检测 分拣 系统 方法
【说明书】:

发明公开了一种三七异物视觉实时检测分拣系统分拣方法,本发明通过振动筛选机构进行初筛,从而适当减轻后续模块的工作量,通过视觉分拣模块可以有效地用于采集传送模块传送的经初筛的三七,再进一步地控制器通过调用冻结模型可以进一步用于识别异物,并进一步根据识别结果驱动机械抓手动作实现分拣,通过本发明公开的系统及方法,有效解决了现阶段的三七处理自动化流水线作业中,三七清洗质量完全是靠工作人员进行抽样检测导致存在遗留异物三七的不足,本发明方法利用深度学习方法进行分析,自动输出识别分拣结果,结合视觉分拣模块,自动剔除不合格的产品,有效降低了工人的劳动强度,同时还可以提高分拣准确率。

技术领域

本发明涉及一种三七异物视觉实时检测分拣系统及分拣方法,属于农业产品视觉识别与分拣技术领域。

背景技术

在三七相关产品生产高峰期,三七生产处理厂每日需处理大量三七原材料。较为完善的三七处理自动化流水线主要包括清洗、烘烤、切片或者制粉。而在清洗流程中,由于三七形状与表面纹理复杂,其主根上会经常夹杂一些难以去除的泥沙和石块等异物。因此,清洗质量是否达标是三七产品后续医药深加工的基本前提和保障。在现阶段的三七处理自动化流水线作业中,三七清洗质量完全是靠工作人员进行人工目视方式的异物抽样检测,这就导致了三七清洗质量检测方法存在着诸多局限。三七的清洗时间过短,其表面附着的异物难以洗净;工业传送带速度过快或者工作人员检测时间过长,都会导致检测质量下降,因此有必要研究一种三七分拣的系统及方法。

发明内容

本发明提供了一种三七异物视觉实时检测分拣系统,通过该系统提供了三七基于视觉实时检测的三七分拣平台,并进一步提供了一种三七异物视觉实时检测分拣方法,通过该方法可以有效地用于分拣存在异物的三七。

本发明的技术方案是:一种三七异物视觉实时检测分拣系统,包括振动筛选机构1、视觉分拣模块2、传送模块3、控制器;其中振动筛选机构1用于对三七进行振动及初筛,传送模块3用于传送经初筛后的三七,视觉分拣模块2用于对传送模块3上的物体进行拍照及根据控制器的驱动进行三七分拣。

所述振动筛选机构1包括筛子4、顶框5、凸轮6、小齿轮7、大齿轮8、电机机架9、电机10、机架I;其中电机10安装在电机机架9上,电机机架9固定在机架I上,电机10输出轴驱动位于筛子4一侧的大齿轮8转动,大齿轮8与位于大齿轮8上方的小齿轮7啮合,下齿轮7的转动带动凸轮6转动,顶框5固定在筛子4一侧用于提供凸轮6转动空间,筛子4通过两侧的支架与弹簧连接安装在机架I上,且筛子4的筛面呈倾斜布置,通过凸轮6转动带动顶框5及筛子4共同上下振动对三七进行初筛。

所述视觉分拣模块2包括机架II11、纵向线性模组12、横向线性模组13、竖向线性模组14、机械抓手15、工业相机16、光源、红外传感器;其中机架II11固定在地面上,两组纵向线性模组12固定在机架II11上方,横向线性模组13固定在两组纵向线性模组12的滑块上,竖向线性模组14位于两组纵向线性模组12之间且固定横向线性模组13的滑块上,机械抓手15固定在竖向线性模组14的滑块上,工业相机16安装在机架II11上用于拍摄传送模块3中传送带22处的图像,光源用于打光,红外传感器用于感应传送带22上是否有物体通过。

所述传送模块3包括机架III、电机支撑板17、电机I18、皮带19、皮带轮20、皮带轴21、传送带22;其中电机支撑板17固定在机架III上,电机I18固定在电机支撑板17上,电机I18驱动第一个皮带轮20转动,第一个皮带轮20通过皮带19带动第二个皮带轮20及安装第二个皮带轮20的第一根皮带轴21转动,两根皮带轴21通过传送带22连接,通过皮带轴21带动传送带22运动。

一种三七异物视觉实时检测分拣方法,所述方法的具体步骤如下:

Step1、构建三七异物图像数据集;

Step2、搭建深度学习网络模型,并采用图像数据集中的训练集训练模型,获得权重参数;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于昆明理工大学,未经昆明理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110686315.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top