[发明专利]一种小尺寸火灾烟气流动模拟实验与数值模拟结合系统有效
申请号: | 202110718987.0 | 申请日: | 2021-06-28 |
公开(公告)号: | CN113409642B | 公开(公告)日: | 2023-02-24 |
发明(设计)人: | 刘震;郭新荣;杨赫;李昊;程卫民;周刚;王刚;林小路;顾庆博 | 申请(专利权)人: | 山东科技大学 |
主分类号: | G09B9/00 | 分类号: | G09B9/00;G09B25/00;G01D21/02;G05B17/02 |
代理公司: | 重庆天成卓越专利代理事务所(普通合伙) 50240 | 代理人: | 王宏松 |
地址: | 266590 山东*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 尺寸 火灾 烟气 流动 模拟 实验 数值 结合 系统 | ||
1.一种小尺寸火灾烟气流动模拟实验装置,包括密闭的房间壳体,其特征在于,还包括于所述房间壳体连通的密闭的走廊壳体;
在房间壳体的顶端设置有用于固定安装喷淋模组的喷淋模组固定安装座和用于固定安装房间传感器模组的房间传感器模组固定安装座以及用于固定安装摄像头的摄像头固定安装座,喷淋模组固定安装在喷淋模组固定安装座上,房间传感器模组固定安装在房间传感器模组固定安装座上,摄像头固定安装在摄像头固定安装座上;
在走廊壳体顶端设置有用于固定安装温湿度控制模组的温湿度控制模组固定安装座和用于固定安装走廊传感器模组的M个走廊传感器模组固定安装座,所述M为大于或者等于1的正整数,分别为第1走廊传感器模组固定安装座、第2走廊传感器模组固定安装座、第3走廊传感器模组固定安装座、……、第M走廊传感器模组固定安装座,第1走廊传感器模组固定安装在第1走廊传感器模组固定安装座上,第2走廊传感器模组固定安装在第2走廊传感器模组固定安装座上,第3走廊传感器模组固定安装在第3走廊传感器模组固定安装座上,……,第M走廊传感器模组固定安装在第M走廊传感器模组固定安装座上,温湿度控制模组固定安装在温湿度控制模组固定安装座上;在走廊壳体的左侧端设置有用于固定安装风速控制模组的风速控制模组固定安装座,风速控制模组固定安装在风速控制模组固定安装座上;
喷淋模组的喷淋控制数据端与模数转换器的喷淋数据端相连,房间传感器模组的数据端与模数转换器的房间数据端相连,摄像头的图像数据端与电脑的图像数据端相连;温湿度控制模组的模拟数据端与模数转换器的温湿度模拟数据端相连,第m走廊传感器模组的数据端与模数转换器的走廊第m数据端相连,所述m为小于或者等于M的正整数,模数转换器将数据传输到电脑;
风速控制器模组包括K个风扇,所述K为大于或者等于2的正整数,分别为第1风扇、第2风扇、第3风扇、……、第K风扇;在第k风扇内装有第k风速控制器,所述k为小于或者等于K的正整数;第k风速控制器根据接收到的风速控制信号控制第k风扇按照风速控制信号运行;
还包括风速总控制器,风速总控制器的第k风速数据端与第k风速控制器的风速数据端相连;风速总控制器的风速控制数据端与模数转换器的风速数据端相连;
风速总控制器根据接收电脑发送的风速控制数据,向K个风速控制器发送运行控制命令,使其k'个风扇扇出的风量与上一时刻的风量相当,所述k'为小于或者等于K的正整数;该小尺寸火灾烟气流动模拟实验装置的数值模拟结合系统方法,包括以下步骤:
S1,将小尺寸火灾烟气流动模拟实验装置的房间壳体上的房间窗户打开,将待燃烧物质置于房间壳体底部的燃烧皿中;根据待燃烧物质,在数值模拟系统中输入火源信息,选择火源类型;
S2,设置好小尺寸火灾烟气流动模拟实验装置中所用喷头类型、喷淋物质、喷淋压力;在数值模拟系统中根据实验装置设置喷淋粒子物质类型、初始位置、速度、直径、喷压,设置粒子源数量和位置与实验装置中喷淋模组的喷头孔口数量和位置相对应;
S3,通过电脑启动并控制小尺寸火灾烟气流动模拟实验装置中的温湿度控制模组、风速控制模组并观察房间传感器模组以及M个走廊传感器模组输入到电脑上的温度、湿度、风速、CO2浓度、压力曲线变化,当达到预设的参数并维持在稳定状态时,将初始环境参数输入电脑中的数值模拟系统中;
S4,根据待燃烧物质和初始环境参数选择合适的数学模型,可选择的湍流模型有直接数值模拟、大涡模拟;可选择的燃烧模型有PDF输运模型、涡耗散概念模型、涡耗散模型、涡耗散/有限速率模型;辐射模型设置为DO模型,其亚松弛系数可选择0.1~0.3;可选择的烟模型为Khan和Greeves的单步模型、Tesner的两步模型、Moss-Brookes模型、Moss-Brookes-Hall模型;
S5,将待燃烧物质点燃并开启数值模拟,观察并记录小尺寸火灾烟气流动模拟实验装置内的火焰燃烧变化和烟气流动情况,保存实验时测得的温度、烟气浓度、CO2浓度数据并将数据传输到电脑中;数值模拟系统输出燃烧时温度场、烟气场的变化情况及各测点所测得的温度、烟气浓度、CO2浓度数据,其中,各测点数据与小尺寸火灾烟气流动模拟实验装置中温度传感器、烟气传感器、CO2传感器相对应;
进一步的,在步骤S5中包括以下步骤:
S51,获取摄像头拍摄的燃烧画面,将获取的摄像头拍摄的燃烧画面记作燃烧图像Burnimage;
S52,对燃烧图像Burn image进行图像转换处理后,得到其转换处理图像Convertimage,其得到转换处理图像Convert image的方法为:
判断其燃烧图像Burn image的色彩度:
若燃烧图像Burn image为彩色图像,则进行如下转换:
其中,表示转换后第λ行第列像素点的像素值,λ为小于或者等于的正整数,表示燃烧图像Burn image中每行像素点的总个数,y表示燃烧图像Burn image的高度值,e表示燃烧图像Burn image的像素分辨率,为小于或者等于σ的正整数,σ=g×e,σ表示燃烧图像Burn image中每列像素点的总个数,g表示燃烧图像Burn image的宽度值;
a+b+c=1;
其中,表示燃烧图像Burn image中第λ行第列像素点的红通道色彩度;a表示红通道色彩度的调节系数;
表示燃烧图像Burn image中第λ行第列像素点的绿通道色彩度;b表示绿通道色彩度的调节系数;
表示燃烧图像Burn image中第λ行第列像素点的蓝通道色彩度;c表示蓝通道色彩度的调节系数;
K(Burn image)表示转换后的图像;Convert image表示转换处理图像;
S53,对步骤S52中得到的转换处理图像Convert image进行火焰特征提取,得到其火焰图像flame image,其得到火焰图像flame image的方法为利用轮廓线法对转换处理图像Convert image进行火焰图像flame image提取;
S54,计算火焰图像flame image的燃烧范围,其火焰图像flame image的燃烧范围的计算方法为:
其中,Nτ表示火焰图像flame image中的像素总个数,Nζ表示燃烧图像Burn image中像素点总个数,表示燃烧图像Burn image中每行像素点的总个数,σ表示燃烧图像Burn image中每列像素点的总个数,y表示燃烧图像Burn image的高度值,g表示燃烧图像Burn image的宽度值,μ表示焦距比例系数,μ∈(0,1],St表示t时刻拍摄的燃烧图像Burn image的燃烧面积;
若St≤S0,S0表示预设燃烧第一面积阈值,则此时火势为一级火势;记录一级火势燃烧时间数;
若S0<St≤S1,S1表示预设燃烧第二面积阈值,预设燃烧第二面积阈值S1大于预设燃烧第一面积阈值S0,则此时火势为二级火势;记录二级火势燃烧时间数;
若St>S2,S2表示预设燃烧第三面积阈值,预设燃烧第三面积阈值S2大于预设燃烧第二面积阈值S1,则此时火势为三级火势;记录三级火势燃烧时间数;
当三级火势燃烧持续时间大于或者等于预设燃烧持续时间阈值,则喷淋模组工作,降低火势情况;
进一步的,在步骤S5中为了保证其将房间壳体内的烟气引入走廊壳体,控制其K个风扇工作的方法为:
S81,判断其不能工作风扇的个数,记作A,A为小于K的正整数;若A为大于或者等于K,则需要更换风扇后才能实验;
S82,获取待输出风量值V,其风量值根据风速传感器进行测量而来,若K-A=1,则控制其能工作的风扇工作使其输出V;
若K-A=2,则控制其其中一个能工作的风扇工作使其输出V;经时间T后,控制其另一个能工作的风扇工作使其输出V;实现交替工作;
若K-A=L,L为大于或者等于3且小于或者等于K,则控制其其中两个能工作的风扇工作使其输出V;经时间T后,控制其不工作的风扇工作使其使其两个风扇输出V;实现交替轮流工作;
S6,通过数值模拟系统中的温度场变化和烟气场变化可知数值模拟系统中火焰燃烧和烟气流动情况,将其与小尺寸火灾烟气流动模拟实验装置内的火焰燃烧和烟气流动情况对比;若数值变化相差较小、火焰燃烧和烟气流动规律相同,则所选用的数学模型合适;若数值变化相差较大则重新选择数学模型;通过重复模拟并与小尺寸火灾烟气流动模拟实验装置进行比较,直至数值模拟误差降至可接受范围。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东科技大学,未经山东科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110718987.0/1.html,转载请声明来源钻瓜专利网。