[发明专利]基于语义编码的混合重传方法有效

专利信息
申请号: 202110766619.3 申请日: 2021-07-07
公开(公告)号: CN113379040B 公开(公告)日: 2022-11-01
发明(设计)人: 姜培文;金石;温朝凯 申请(专利权)人: 东南大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08;G06F11/10
代理公司: 南京瑞弘专利商标事务所(普通合伙) 32249 代理人: 秦秋星
地址: 211102 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 语义 编码 混合 方法
【说明书】:

发明公开一种基于语义编码的混合重传方法,包括:对待传输的内容训练一个主语义编解码器和多个增量冗余语义编解码器;对第一类混合重传方法:只用一个主语义编解码器替换原信源信道编解码,发送端对信源进行语义编码和CRC校验编码并发送,接收端在解码并CRC校验,若有错则丢弃码字,并通知发送端重发同样的码字;对第二类混合重传方法,接收端在发现错误后不丢弃错误码字,而通知发送端继续用一个增量冗余语义编码器对信源编码并发送,接收端每次都合并所有接收到的码字并用对应的增量冗余语义解码器完成解码并进行CRC校验。本发明相较于基于传统前向编码的混合重传方法,大幅降低了发送码长并改善了混合重传机制在长期恶劣信道环境下的译码性能。

技术领域

本发明涉及一种基于语义编码的混合重传方法,属于无线通信技术领域。

背景技术

近年来,基于注意力机制的语义自编码网络在自然语言处理等众多学科得到了广泛应用,不断取得突破性的成果。在通信领域,基于传输内容感知的语义通信是目前的热点研究方向之一,有望实现传统通信从符号传输向语义传输的突破。

对于作为通信关键技术之一的混合重传技术,目前已经有基于不同前向纠错码的混合重传方式。但是,目前的纠错编码方式仅仅停留在对比特级或者符号级的数据进行编码,不能理解具体的传输内容,不能根据传输内容的上下文联系实现高效压缩和纠错,其纠错能力和重传机制受到长期恶劣信道环境的挑战。同时,现有的语义通信编解码器在未结合混合重传机制时,受到固定网络结构的影响,无法适应多样的信源信息和不断变化的无线通信信道环境,导致其实际应用不能发挥出最好性能。

发明内容

本发明所要解决的技术问题在于克服现有技术的不足,提供一种基于语义编码的混合重传方法,解决现有技术存在的对于传输带宽要求高,无法工作在长期恶劣信道环境,无法适应信源和信道环境快速变化的问题。

本发明具体采用以下技术方案解决上述技术问题:

一种基于语义编码的混合重传方法,包括以下步骤:

步骤一、对基于待传输内容对主语义编解码网络进行离线训练,包括:使用内容范围特定的信源数据集s,在发送端经过语义编码网络得到待传输码字b,其码长为n;考虑信道干扰的影响,在接收端获得码字b的估计值将输入语义解码网络且将其输出看作对发送信源s的估计;信源数据集s作为网络的输入样本和标签对收发两端的编解码网络进行端到端训练,使用优化算法调整网络参数,并将离线训练完成后的网络参数存储,得到离线训练后的主语义编解码网络;

步骤二、考虑第二类混合重传时还需要离线训练增量语义编解码网络,包括:对于第i次增量重传,发送端使用第i个增量语义编码网络将信源s编码成增量码字bi,其码长为ni;接收端在信道干扰下获得增量码字的估计并将前面接收到的码字与合并输入第i个增量语义解码网络获得第i次重传得到的发送信源的估计其标签仍为s;信源数据集s作为网络的输入样本对收发两端的编解码网络进行端到端训练,使用优化算法调整网络参数,并将离线训练完成后的网络参数存储,得到离线训练后的第i个增量语义编解码网络;

步骤三、部署为第一类混合重传时,发送端需调用主语义编码网络将某个信源s′编码成码字b′,同时也传输用于CRC校验码字;接收端接收到码字的估计和CRC检验码后,先将通过主语义解码器获得信源的估计再用CRC检验是否出错;若出错则丢弃并通知发送端重发,接收端重复解码和校验的步骤直到无错或者达到重传上限。

步骤四、部署为第二类混合重传时,发送端需调用主语义编码网络将某个信源s′编码成码字b′,同时也传输用于CRC校验码字;接收端接收到码字的估计和CRC检验码后,先将通过主语义解码器获得信源的估计再用CRC检验是否出错;若出错则通知发送端进行第一次增量重传,即使用第一个增量编码网络发送增量码字b1,接收端接收到增量码字的估计并将前面接收到的码字与合并输入第一个增量解码网络解码并进行CRC校验,如出错则继续使用下一个增量编解码网络完成下一次增量重传,直到无错或者达到重传上限。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110766619.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top