[发明专利]基于机器学习的城市内涝积水点积水过程预测方法及系统有效

专利信息
申请号: 202110786173.0 申请日: 2021-07-12
公开(公告)号: CN113408211B 公开(公告)日: 2022-02-11
发明(设计)人: 徐卫红;王杉;高建标;张念强;俞茜;李娜;韩松;王静;王艳艳;丁志雄 申请(专利权)人: 中国水利水电科学研究院
主分类号: G06F30/27 分类号: G06F30/27;G06Q10/04;G06Q50/26;G06N20/00;G06F113/08
代理公司: 北京正华智诚专利代理事务所(普通合伙) 11870 代理人: 何凡
地址: 100044 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 机器 学习 城市 内涝 积水 过程 预测 方法 系统
【说明书】:

发明公开了一种基于机器学习的城市内涝积水点积水过程预测方法及系统,包括根据积水监测站点的历史积水过程数据和临近降雨监测站点的历史降雨过程数据,构建积水过程与降雨过程相关的城市内涝积水点积水过程预测模型;分别计算积水监测站点上的实时降雨过程数据和定量预报降雨过程数据;将定量预报降雨过程数据与实时降雨过程数据拼接,得到积水监测站点上的实时和预报降雨过程数据;基于实时和预报降雨过程数据,利用构建的城市内涝积水点积水过程预测模型进行城市内涝积水点积水过程预测。本发明具有操作简单、建模速度快,计算效率高,预测精度高等优点,能够实现准确有效的积水预测,有助于城市内涝应急防治。

技术领域

本发明涉及城市内涝预测技术领域,具体涉及一种基于机器学习的城市内涝积水点积水过程预测方法、系统、设备及存储介质。

背景技术

随着城镇化的快速发展,城市不透水面积随之增加,城市水文效应发生改变,加之城市排水设施能力不足等原因,城市暴雨内涝问题开始凸显。近几年,我国“城市看海”的现象频发,引发城市供水、供电、通讯等故障、交通瘫痪、商业区、生产区、居民区被淹没等一系列问题,不仅影响和干扰居民的生活和生产,还使得人们的财产蒙受巨大损失。城市暴雨内涝已成为威胁城市安全,干扰城市运行的重要因素。

综合分析,近些年城市内涝频发的原因主要如下:全球气候变暖使得极端天气频发,极端降雨发生的频率和强度随之增加;城镇化进程的加快使得下垫面硬化率增大,导致地表径流增加;城市排水系统的排水能力不足,无法及时将降水排出,易在地势低洼区域产生积水。

目前,城市内涝预测普遍采用结合天气预报运用基于数值模型模拟或者是根据经验进行推测的方法。对于基于数值模型预测的方式受限于对城市基础本底资料掌握不足、模型构建及运算效率较低以及专业人员本身能力等原因,导致难以精确且高效地对城市内涝进行预测;而基于经验进行城市内涝预测的方法,更加受限于专业人员自身的知识与经验储备,预测结果的精度也高低不一。

发明内容

针对现有技术中的上述不足,本发明提供了一种基于机器学习的城市内涝积水点积水过程预测方法。

为了达到上述发明目的,本发明采用的技术方案为:

第一方面,本发明提供了一种基于机器学习的城市内涝积水点积水过程预测方法,包括以下步骤:

S1、利用改进的K邻域法建立积水监测站点和临近降雨监测站点之间的插值拓扑关系;

S2、获取积水监测站点的历史积水过程数据和临近降雨监测站点的历史降雨过程数据,根据步骤S1建立的插值拓扑关系,采用反距离权重插值法得到积水监测站点的历史降雨过程数据,构建积水过程与降雨过程相关的城市内涝积水点积水过程预测模型;

S3、获取临近降雨监测站点的实时降雨过程数据,根据步骤S1建立的插值拓扑关系,采用反距离权重插值法得到积水监测站点的实时降雨过程数据;并根据多源定量降雨预报数据产品的时空特征,对各产品降雨过程数据进行融合,得到积水监测站点的定量预报降雨过程数据;

S4、将积水监测站点的实时降雨过程数据与定量预报降雨过程数据进行拼接,得到积水监测站点的实时和预报降雨过程数据;

S5、利用城市内涝积水点积水过程预测模型,根据积水监测站点的实时和预报降雨过程数据,进行城市内涝积水点积水过程预测。

进一步地,所述步骤S1具体包括以下分步骤:

S11、判断积水监测站点位置上是否同时存在降雨监测站点;若是,则将该点形成临近降雨监测站点领域点集,进入步骤S17;否则进入步骤S12;

S12、获取积水监测站点和城区全部降雨监测站点的经纬度坐标;

S13、以积水监测站点作为坐标系原点构建二维坐标系,计算各降雨监测站点的相对坐标;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国水利水电科学研究院,未经中国水利水电科学研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110786173.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top