[发明专利]一种基于超声图像的室间隔抖动自动检测系统在审

专利信息
申请号: 202110845336.8 申请日: 2021-07-26
公开(公告)号: CN113570569A 公开(公告)日: 2021-10-29
发明(设计)人: 杨金柱;马春燕;瞿明军;李洪赫;王永槐;曹鹏;冯朝路;覃文军;栗伟 申请(专利权)人: 东北大学;中国医科大学附属第一医院
主分类号: G06T7/00 分类号: G06T7/00;G06T7/10;G06K9/62;G06N3/04
代理公司: 沈阳东大知识产权代理有限公司 21109 代理人: 李珉
地址: 110819 辽宁*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 超声 图像 室间隔 抖动 自动检测 系统
【权利要求书】:

1.一种基于超声图像的室间隔抖动自动检测系统,通过以下步骤实现对室间隔抖动的自动检测:

获取多个带SF标签的超声心动图作为样本数据集;

初始化用于室间隔抖动检测的深度神经网络模型,并使用样本数据集预训练深度神经网络模型,得到预训练深度神经网络模型;

所述用于室间隔抖动检测的深度神经网络模型包括左心室分割网络U-Net和基于编解码器的SF诊断网络;

加载预训练深度神经网络模型的模型参数和配置文件,分割待评估的超声心动图中的左心室,输出室间隔抖动判断结果。

2.根据权利要求1所述的一种基于超声图像的室间隔抖动自动检测系统,其特征在于:所述系统还通过包括原始超声心动图像和对应标签的微调数据集微调预训练的深度神经网络模型参数。

3.根据权利要求1所述的一种基于超声图像的二尖瓣环位移自动检测系统,其特征在于:所述获取的多个带SF标签的超声心动图为遵循医疗数位影像传输协定的dcm格式的超声心动图文件,或dcm格式的超声心动图文件解析后的单帧图像及其对应的SF标签。

4.根据权利要求1所述的一种基于超声图像的二尖瓣环位移自动检测系统,其特征在于:所述左心室分割网络U-Net用于超声心动图中左心室的图像分割,基于编解码器的SF诊断网络的输入为经过STN模块进行角度矫正后的四腔心左心室分割图像序列,输出为SF诊断结果。

5.根据权利要求4所述的一种基于超声图像的二尖瓣环位移自动检测系统,其特征在于:所述左心室分割网络U-Net由压缩路径和扩展路径组成;所述压缩路径与扩展路径均由5个块组成,压缩路径中每个块执行2个核为3×3的卷积操作以及1个2×2最大池化的降采样操作;压缩路径中各块输出的特征图经过复制裁剪操作,与输入到扩展路径对应块的特征图在通道维度合并;扩展路径由5个块组成,每个块执行1个核为2×2的反卷积操作以及2个核为3×3的卷积操作,第5个块在最后增加一个核为1×1的卷积操作用以输出左心室分割图像。

6.根据权利要求5所述的一种基于超声图像的二尖瓣环位移自动检测系统,其特征在于:所述基于编解码器的SF诊断网络由基于序列到序列的编解码器网络构成,总体框架为级联的ResNet-LSTM;其中,编码器网络使用删除最后一个全连接层的ResNet-18作为主干网络,并在此基础上添加三个尺寸分别为512,512,256的全连接层用以表征编码器图像特征;解码器网络基于LSTM网络,用于获得编码图像的时序特征;同时,使用左心室容积变化曲线作为辅助信息,经分枝网络处理后与LSTM输出时序特征进行融合,融合特征同时包含左心室分割图像信息和左心室容积变化信息;融合特征经过级联的2级尺寸分别为(256,2)的全连接层输出诊断结果。

7.根据权利要求1所述的一种基于超声图像的二尖瓣环位移自动检测系统,其特征在于:所述预训练深度神经网络模型的模型参数和配置文件包括一次性读入神经网络的图像数量,训练神经网络的迭代次数,并行计算的进程数量以及训练使用的设备及设备号。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学;中国医科大学附属第一医院,未经东北大学;中国医科大学附属第一医院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110845336.8/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top