[发明专利]基于目标语义与位置融合的方面意见词抽取方法有效
申请号: | 202110861377.6 | 申请日: | 2021-07-29 |
公开(公告)号: | CN113486673B | 公开(公告)日: | 2022-10-25 |
发明(设计)人: | 刘德喜;廖黾;万常选 | 申请(专利权)人: | 刘德喜 |
主分类号: | G06F40/30 | 分类号: | G06F40/30;G06F40/284;G06F40/211;G06N3/04;G06N3/08 |
代理公司: | 北京保识知识产权代理事务所(普通合伙) 11874 | 代理人: | 张晶 |
地址: | 330013 江西省南昌市昌北国家经济*** | 国省代码: | 江西;36 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 目标 语义 位置 融合 方面 意见 抽取 方法 | ||
1.基于目标语义与位置融合的方面意见词抽取方法,将方面目标信息合并到上下文中并学习融合方面目标的上下文表示,构造新的序列标注模型,其特征在于,包括以下步骤;
步骤一:输入层,AP-IOG模型在句子的开头和结尾分别补上头尾标识符;
步骤二:Inward-LSTM层,使用Inward-LSTM将包含候选意见词的上下文信息传递给方面目标,把方面目标词作为LSTM的最后一个输入单元,能够更好的利用方面目标的语义信息;
步骤三:Outward-LSTM层,使用Outward-LSTM将方面目标传递给上下文,确保针对不同的目标,每个单词具有不同的表示形式;
步骤四:AP Global-LSTM层,使用AP Global-LSTM能获取整个句子的语义信息,而且更好地注意到句子中的方面目标信息以及附近候选意见词的信息,完善句子的语义信息,所述AP Global-LSTM层使用Bi-LSTM编码获取全局信息,使用位置注意力增强机制获取局部信息和相对位置信息,以完善句子的语义信息;
所述位置注意力增强机制表示如下:
1)注意力机制:
Self-Attention是输入句子Source内部元素之间的Attention机制,Query(Q)、Key(K)、Value(V)是由全局上下文表示HG经过不同的线性变换得到,通过Self-Attention得到权重求和的表示如式(10)所示;
2)位置信息的处理方法为:
①给定一个句子s={w1,w2,....,wn},其中包含方面目标词{wl+1,...,wr-1},检索到方面目标所在的位置[l+1,r-1],设置该方面目标的相对位置li为0,如式(11)所示;
li=0,l+1≤i≤r-1 (11)
②以方面目标为中心,在方面目标的两侧设置两个工作指针,分别依次计算方面目标左侧单词和方面目标左侧wl+1之间的相对位置,右侧单词和方面目标右侧wr-1之间的相对位置的值,记相对位置为li,其计算公式如式(12)所示;
③通过查找位置嵌入表中获得位置嵌入,其中dp是嵌入维度,dp与词嵌入维度d一致,L是最大位置索引,获取每个位置向量hPOS;
将每一个词的全局上下文信息与该词的位置向量进行叉乘,得到每个词的联合特征如式(13)所示;
所述AP Global-LSTM层表示如下:
在AP Global-LSTM中,通过将基于位置注意力增强的句子表示和Bi-LSTM的句子表示相加,获得位置注意力增强的全局上下文表示形式如式(14)所示;
步骤五:融合层,将Inward-LSTM、Outward-LSTM和AP Global-LSTM上下文拼接起来,向量拼接使各个不同类型的特征向量充分发挥其作用,使输入层具有更丰富的信息;
步骤六:解码层,使用贪婪解码作为解码器,贪婪解码被独立地描述为每个位置的三类分类问题。
2.根据权利要求1所述的基于目标语义与位置融合的方面意见词抽取方法,其特征在于,所述输入层表示如下:
使用嵌入查找表L∈Rd×|V|生成每个单词的输入向量,其中d是嵌入向量的维度,|V|是{w1,w2,....,wn}词汇量,嵌入查找表将{w1,w2,....,wn}映射到向量序列s={x1,x2,...,xn},作为词的表示形式,其中xi∈Rd。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于刘德喜,未经刘德喜许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110861377.6/1.html,转载请声明来源钻瓜专利网。