[发明专利]轨迹生成模型训练方法、轨迹生成方法及装置在审

专利信息
申请号: 202110928066.7 申请日: 2021-08-12
公开(公告)号: CN113761395A 公开(公告)日: 2021-12-07
发明(设计)人: 王寰东;李勇;张启钟;金德鹏 申请(专利权)人: 清华大学
主分类号: G06F16/9537 分类号: G06F16/9537;G06F16/2458;G06N3/04
代理公司: 北京路浩知识产权代理有限公司 11002 代理人: 谢志超
地址: 100084 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 轨迹 生成 模型 训练 方法 装置
【权利要求书】:

1.一种轨迹生成模型训练方法,其特征在于,包括:

将历史移动数据输入到逆向生成模型,得到对应所述历史移动数据的隐含移动特征;

将所述隐含移动特征输入到轨迹生成模型,分别得到时间维度的指数分布和空间维度的多项式分布;

训练并优化由所述逆向生成模型和所述轨迹生成模型共同构成的变分时间点过程模型,训练结束后,得到用于轨迹生成的所述轨迹生成模型。

2.根据权利要求1所述的轨迹生成模型训练方法,其特征在于,所述历史移动数据包括用户静态信息、地点信息、进入地点的时间以及进入地点后的停留时间;

所述将历史移动数据输入到逆向生成模型,得到对应所述历史移动数据的隐含移动特征,包括:

将所述进入地点的时间输入到位置编码网络,得到经过位置编码的进入地点的时间;将所述停留时间、所述用户静态信息和所述地点信息分别输入到嵌入式编码网络,得到经过嵌入式编码的停留时间、用户静态信息和地点信息;

将所述经过位置编码的进入地点的时间、所述经过嵌入式编码的停留时间、用户静态信息和地点信息输入到全连接层,拼接得到第一向量;

将所述第一向量输入到LSTM神经网络,得到第一隐状态变量;

将所述第一隐状态变量分别输入到均值编码器和方差编码器,得到对应所述历史移动数据的隐含移动特征。

3.根据权利要求2所述的轨迹生成模型训练方法,其特征在于,所述将所述隐含移动特征输入到轨迹生成模型,分别得到时间维度的指数分布和空间维度的多项式分布,包括:

将所述隐含移动特征、所述经过嵌入式编码的用户静态信息及所述经过位置编码的进入地点的时间输入到LSTM神经网络,得到第二隐状态变量;

将所述第二隐状态变量输入到时间解码器,得到强度函数,根据所述强度函数得到所述时间维度的指数分布;其中,所述时间解码器包括全连接层,并且最后一层全连接层的输出经由指数函数处理;

将所述第二隐状态变量输入到第一地点解码器,得到基于时间点过程的多项式分布,根据所述基于时间点过程的多项式分布得到所述空间维度的多项式分布;其中,所述第一地点解码器包括全连接层,并且最后一层全连接层的输出维度设置为经过编号后的区域总数。

4.根据权利要求1所述的轨迹生成模型训练方法,其特征在于,所述历史移动数据包括用户静态信息、地点信息、进入地点的时间、进入地点后的停留时间以及地点POI信息;

所述将历史移动数据输入到逆向生成模型,得到对应所述历史移动数据的隐含移动特征,包括:

将所述进入地点的时间输入到位置编码网络,得到经过位置编码的进入地点的时间;将所述停留时间、所述用户静态信息、所述地点信息及所述地点POI信息分别输入到嵌入式编码网络,得到经过嵌入式编码的停留时间、用户静态信息、地点信息及地点POI信息;

将所述经过位置编码的进入地点的时间、所述经过嵌入式编码的停留时间、用户静态信息、地点信息及地点POI信息输入到全连接层,拼接得到第二向量;

将所述第二向量输入到LSTM神经网络,得到第三隐状态变量;

将所述第三隐状态变量分别输入到均值编码器和方差编码器,得到对应所述历史移动数据的隐含移动特征。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110928066.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top