[发明专利]对状态受限非线性系统进行鲁棒状态估计的方法及装置有效
申请号: | 202110937009.5 | 申请日: | 2021-08-16 |
公开(公告)号: | CN113625552B | 公开(公告)日: | 2023-04-07 |
发明(设计)人: | 殷乐;申宇;高辉 | 申请(专利权)人: | 西南大学 |
主分类号: | G05B13/02 | 分类号: | G05B13/02 |
代理公司: | 北京集佳知识产权代理有限公司 11227 | 代理人: | 王晓坤 |
地址: | 400715*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 状态 受限 非线性 系统 进行 估计 方法 装置 | ||
本申请公开了一种对状态受限非线性系统进行鲁棒状态估计的方法及装置,该方法包括:对预先设定应用背景为状态受限非线性系统进行状态空间实现;利用统计线性回归方法将非线性系统转化为线性系统;利用正则化最小二乘原理对异常干扰及线性化所引入的相关性进行处理;利用拉格朗日乘子法对约束条件进行处理;利用交替方向乘子法对系统的状态值和异常干扰进行同时估计;将异常干扰发生的估计概率与经验概率之差最小化时所对应的用于调整异常干扰检测强度的正则化参数作为最佳正则化参数。这样能够在状态受限非线性系统受到异常干扰影响的情况下消除系统因线性化所引入的相关性而带来的额外负面影响,得到鲁棒性的准确状态估计结果。
技术领域
本发明涉及离散非线性系统滤波技术领域,特别是涉及一种对状态受限非线性系统进行鲁棒状态估计的方法及装置。
背景技术
在实际应用中,许多工程系统都具有非线性及非对称的系统动态特性。虽然带高斯噪声干扰的非线性模型被广泛地应用于描述实际的物理系统,但高斯噪声模型仅仅是对现实噪声的一种近似。在工程实践中,工况变化、人为操作失误以及系统故障等因素均可以在系统中引入异常干扰,从而使得实际噪声具有非高斯特性。当实际噪声偏离高斯假设的时候,传统的估计方法将失去其应有的准确性和鲁棒性。与此同时,由于客观物理条件的限制、设备性能瓶颈的约束以及安全因素的考量,许多工程系统往往需要在满足某些状态约束条件的情况下运行。如果系统的运行违背了这些约束条件,则有可能发生性能下降、元器件损坏、运行状态不受控制等情况,轻则造成财产损失,重则危及人身安全。因此,在各种异常因素和约束条件存在的情况下,如何对非线性系统的状态进行精确估计,在系统的监测和控制中都有着十分重要的意义。
现有的估计器设计主要通过对非线性系统进行线性化的方法来进行,试图将线性系统的滤波方法扩展到非线性系统之中。然而线性化意味着系统函数和观测函数都需要在某一个估计的状态值附近展开,因而为线性化过后的系统函数和观测函数引入了额外的相关性。当估计的状态值中出现异常干扰所导致的离群值的时候,系统方程和观测方程都会受到该离群值的影响,进而使得现有估计器如扩展卡尔曼滤波器、无迹卡尔曼滤波器等滤波方法很难判断出离群值的存在,更无法妥善解决如何消除离群值通过这些相关性所传播的负面影响等问题。这是因为如果超过一半的方程数据都受到影响,那么在不考虑该相关性存在的情况下是很难判断出离群值的存在。除此之外,实际工程系统中的各项变量往往受限于现实世界的客观条件和物理定律,如何在满足这些约束条件的前提下完成对系统状态的精确估计也是有待解决的问题。
因此,如何保证在不大幅增加计算复杂度的同时为状态受限非线性系统提供精确的状态估计结果,是本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本发明的目的在于提供一种对状态受限非线性系统进行鲁棒状态估计的方法及装置,可以在状态受限非线性系统受到异常干扰影响的情况下消除系统因线性化所引入的相关性而带来的额外负面影响,得到鲁棒性的准确状态估计结果。其具体方案如下:
一种对状态受限非线性系统进行鲁棒状态估计的方法,应用于滤波器,包括:
对预先设定应用背景为状态受限非线性系统进行状态空间实现;
利用统计线性回归方法对所述状态受限非线性系统进行线性化处理;
利用正则化最小二乘法对所述状态受限非线性系统中的异常干扰及线性化处理过程中所引入的系统相关性进行处理;
利用拉格朗日乘子法对所述状态受限非线性系统的约束条件进行处理;
利用交替方向乘子法对所述状态受限非线性系统的状态值和异常干扰进行同时估计;
将异常干扰发生的估计概率与经验概率之差最小化时所对应的正则化参数作为所述状态受限非线性系统的最佳正则化参数;所述正则化参数用于调整所述异常干扰的检测强度。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南大学,未经西南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110937009.5/2.html,转载请声明来源钻瓜专利网。