[发明专利]一种热风再流焊工艺的稳健性与可靠性综合优化设计方法在审
申请号: | 202110964075.1 | 申请日: | 2021-08-21 |
公开(公告)号: | CN113642219A | 公开(公告)日: | 2021-11-12 |
发明(设计)人: | 龚雨兵;覃杨;陈蔡;潘开林;黄伟;王雪莹 | 申请(专利权)人: | 桂林电子科技大学 |
主分类号: | G06F30/23 | 分类号: | G06F30/23;G06F111/04;G06F111/10;G06F119/02;G06F119/08 |
代理公司: | 桂林市华杰专利商标事务所有限责任公司 45112 | 代理人: | 覃永峰 |
地址: | 541004 广西*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 热风 焊工 稳健 可靠性 综合 优化 设计 方法 | ||
1.一种热风再流焊工艺的稳健性与可靠性综合优化设计方法,其特征在于,包括以下步骤:
步骤一:通过数值仿真方法,建立热风再流焊工艺仿真模型,得到工艺参数与焊点温度曲线之间的对应关系,并将工艺参数和焊点温度曲线进行参数化;
步骤二:以焊点的热疲劳寿命作为可靠性评价指标,优化热疲劳寿命至最大的同时进行稳健性优化设计,以焊点的峰值温度、超液相线时间、冷却速率、加热因子、升温速率和保温时间工艺性能参数作为稳健性评价指标,将其作为综合优化设计的约束条件,约束规则设置为:
峰值温度+6σ1≤峰值温度上限值;
超液相线时间+6σ2≤超液相线时间上限值;
冷却速率+6σ3≤冷却速率上限值;
加热因子+6σ4≤加热因子上限值;
升温速率+6σ5≤升温速率上限值;
保温时间+6σ6≤保温时间上限值;
峰值温度-6σ1≥峰值温度下限值;
超液相线时间-6σ2≥超液相线时间下限值;
冷却速率-6σ3≥冷却速率下限值;
加热因子-6σ4≥加热因子下限值;
升温速率-6σ5≥升温速率下限值;
保温时间-6σ6≥保温时间下限值;
其中,σ1为峰值温度的标准差,σ2为超液相线时间的标准差,σ3为冷却速率的标准差,σ4为加热因子的标准差,σ5为升温速率的标准差,σ6为保温时间的标准差;
步骤三:基于金属间化合物(Intermetallic Compound,简称IMC)工艺生长实验,根据IMC厚度生长实验结果,构建冷却时间、超液相线时间和峰值温度工艺参数与焊点初始IMC厚度的关系式;
步骤四:根据实验或数值仿真结果,得到不同初始IMC厚度与焊点热疲劳寿命的关系式;
步骤五:计算焊点的热疲劳寿命,采用空间填充拉丁超立方抽样方法,对焊点抽样后,进行灵敏度分析,建立响应面代理模型;
步骤六:对代理模型进行确定性优化,并对优化后的模型进行精度验证,各工艺参数响应值误差若满足精度要求,则对该工艺设计方案进行稳健性和可靠性评价;若不满足精度要求则重新构建样本点;
步骤七:对确定性优化后的模型和原参数化模型进行稳健性和可靠性综合评价;
步骤八:采用自适应响应面优化方法,对代理模型进行稳健性与可靠性综合优化设计,以6σ为设计准则,迭代计算,最终得到一组最为稳健和可靠的工艺参数。
2.根据权利要求1所述的热风再流焊工艺的稳健性与可靠性综合优化设计方法,其特征在于,步骤一中,采用ANSYS Workbench建立数值仿真模型,使用的有限元模型的再流焊工艺过程中共包括2个预热区、4个保温区、3个再流区和2个冷却区共11个温区,温区的温度从室温到275℃,将11个温区温度作为参数化模型的关键设计变量,将仿真模型的输出:峰值温度、超液相线时间、冷却速率、加热因子、升温速率和保温时间作为参数化模型的响应。
3.根据权利要求1所述的热风再流焊工艺的稳健性与可靠性综合优化设计方法,其特征在于,步骤二中,约束条件包括保温时间60~90s,超液相线时间60~90s,冷却速率1.2~4℃/s,升温速率1.2~2℃/s,峰值温度210~230℃以及加热因子在800~1600s·℃。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110964075.1/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种高温脱硫除尘装置
- 下一篇:一种货箱安装结构及车辆