[发明专利]迁移率预测模型的训练方法、使用方法、装置及设备在审
申请号: | 202111029216.7 | 申请日: | 2021-09-01 |
公开(公告)号: | CN113935495A | 公开(公告)日: | 2022-01-14 |
发明(设计)人: | 李骏琪;邵俊;万友平 | 申请(专利权)人: | 深圳索信达数据技术有限公司 |
主分类号: | G06N20/00 | 分类号: | G06N20/00;G06Q40/02 |
代理公司: | 深圳中细软知识产权代理有限公司 44528 | 代理人: | 孔祥丹 |
地址: | 518000 广东省深圳市南山区粤海街道*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 迁移率 预测 模型 训练 方法 使用方法 装置 设备 | ||
1.一种迁移率预测模型的训练方法,其特征在于,所述方法应用于服务器,所述方法包括:
获取目标用户的第一样本数据集,所述第一样本数据集包括所述目标用户的非隐私数据以及所述目标用户的类别标签;
将所述第一样本数据集包括的训练集输入梯度提升模型进行单步预测,确定第一损失;根据所述第一损失及梯度算法,得到一阶梯度;
将所述第一样本数据集包括的测试集输入所述梯度提升模型进行单步预测,得到第二损失;根据所述第二损失、所述一阶梯度以及学习率,确定二阶梯度;
利用所述二阶梯度对所述梯度提升模型进行单步更新,得到更新后的梯度提升模型;返回执行所述获取目标用户的第一样本数据集的步骤,直至返回执行次数达到预设迭代次数,并将最后得到的梯度提升模型确定为第一迁移率预测模型;
将所述第一迁移率预测模型分发至各个待预测用户对应的客户端。
2.根据权利要求1所述方法,其特征在于,所述将最后得到的梯度提升模型确定为第一迁移率预测模型之后,还包括:
利用所述第一迁移率预测模型对各个候选用户进行迁移率预测,得到各个所述候选用户对应的迁移率;
利用各个所述候选用户对应的迁移率及预设统计学算法,确定统计均值和统计方差;
将所述统计均值和统计方差分发至各个所述待预测用户对应的客户端,所述客户端用于基于所述统计均值和统计方差确定风险信号强度,所述风险信号强度用于指示所述待预测用户的逾期还款的风险强度。
3.根据权利要求1所述方法,其特征在于,所述将所述第一迁移率预测模型分发至各个待预测用户对应的客户端,之后还包括:
接收各个所述待预测用户对应的客户端上报的风险提示信息,所述风险提示信息包括风险信号强度;
根据所述风险信号强度及预设的等级确定规则,确定所述风险信号强度对应的风控等级;
基于所述风控等级对所述待预测用户执行对应的风控操作。
4.根据权利要求1所述方法,其特征在于,所述获取目标用户的第一样本数据集之前还包括:
获取样本用户的非隐私数据,根据所述非隐私数据对已达到风险表现期的候选用户进行聚类,得到所述候选用户对应的类别标签;
将所述候选用户的非隐私数据按照数据产生时间顺序进行排序,得到样本数据序列,所述样本数据序列包括所述候选用户的非隐私数据及所述候选用户的类别标签;
则所述获取目标用户的第一样本数据集包括:
利用随机抽取规则从所述样本数据序列中进行随机抽取,得到第一样本数据集,所述随机抽取规则包括预设的类别抽取数量;
按照预设划分比例对所述第一样本数据集进行划分,确定第一样本数据集对应的训练集以及测试集。
5.一种迁移率预测模型的使用方法,其特征在于,所述方法应用于客户端,所述方法包括:
接收所述服务器发送的第一迁移率预测模型、以及获取与所述客户端对应的待预测用户的第一隐私样本数据,所述第一隐私样本数据包括所述待预测用户的非隐私数据以及所述待预测用户的隐私数据,所述第一迁移率预测模型基于权利要求1中的一种迁移率预测模型的训练方法得到的;
根据所述第一迁移率预测模型以及所述第一隐私样本数据确定所述待预测用户对应的第二迁移率预测模型;
利用所述第二迁移率预测模型以及预设风险判断规则,确定所述待预测用户是否存在逾期风险。
6.根据权利要求5所述方法,其特征在于,所述根据所述第一迁移率预测模型以及所述第一隐私样本数据确定所述待预测用户对应的第二迁移率预测模型,包括:
将所述第一隐私样本数据输入所述第一迁移率预测模型,得到第二迁移率预测模型;
确定所述隐私数据的数据更新次数;
当所述数据更新次数达到预设的更新次数阈值,则将所述第二隐私样本数据输入所述第二迁移率预测模型,得到第三迁移率预测模型,所述第二隐私样本数据包括所述数据更新次数达到所述更新次数阈值的所述待预测用户的隐私数据及所述待预测用户的非隐私数据。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳索信达数据技术有限公司,未经深圳索信达数据技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111029216.7/1.html,转载请声明来源钻瓜专利网。