[发明专利]基于Transformer模型的实体关系抽取方法和系统在审
申请号: | 202111101997.6 | 申请日: | 2021-09-18 |
公开(公告)号: | CN113806514A | 公开(公告)日: | 2021-12-17 |
发明(设计)人: | 李哲;傅洛伊;王新兵 | 申请(专利权)人: | 上海交通大学 |
主分类号: | G06F16/335 | 分类号: | G06F16/335;G06F40/117;G06F40/126;G06F40/242;G06F40/295;G06F40/30;G06N3/04;G06N3/08 |
代理公司: | 上海汉声知识产权代理有限公司 31236 | 代理人: | 胡晶 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 transformer 模型 实体 关系 抽取 方法 系统 | ||
本发明提供了一种基于Transformer模型的实体关系抽取方法和系统,包括:对非结构化文本进行数据处理,得到实体以及对应关系;根据关系类型,将关系抽取转换成填空的形式;基于Transformer结构,构建联合抽取模型,在编码器进行实体抽取,在非自回归解码器进行关系抽取;在解码器输入关系模板,基于前馈神经网络的复制机制,输出具有对应关系的实体对;通过两阶段排序策略和负采样机制训练模型,并对联合抽取模型效果的进行测试,并依据测试结果调整联合抽取模型。通过本发明可以实现在非结构化文本中进行特定关系的抽取,并识别出对应的实体,从而利用文本中有价值的信息。
技术领域
本发明涉及信息抽取技术领域,具体地,涉及一种基于Transformer模型的实体关系抽取方法和系统。
背景技术
随着大数据时代的到来,海量的非结构化文本越来越多地出现在互联网。人们希望能够通过计算机来自动获取这些文本中的结构化的信息。实体关系抽取通常分为两个部分:命名实体识别以及关系抽取。命名实体识别的目标是在文本当中识别出对应的命名实体;关系抽取目标是从文本当中提取特定的关系。在文本数据激增的今天,实体关系抽取成为了知识图谱构建的关键步骤,许多研究人员此领域进行了探索。
专利文献CN112183023A(申请号:CN202011045802.6)公开了一种多关系抽取方法和终端,该方法包括:将待处理句子中的每个词进行向量变换后输入Transformer模型的解码器进行编码,得到编码向量;将预设句子中的每个词进行向量变换,得到预设向量;将所述编码向量与所述预设向量同时输入所述Transformer模型的解码器进行解码,得到输出数据集;所述输出数据集由多个按序排列的子数据集组成,每个所述子数据集由5个按序排列的输出数据组成;依次基于每个所述子数据集中按序先后排列的5个输出数据确定所有的关系及其实体对。
传统的实体关系抽取通常采用管道的方法,也就是先进行实体抽取再进行关系分类。这种方法虽然灵活,但是存在着误差传播的问题,并且不能很好地利用两个子任务之间的联系。近几年,基于联合实体关系抽取的模型受到越来越多的关注,可以在一个模型中同时完成两个子任务,成为了目前的主要研究方向。但是现有的方法存在着三个显著问题:首先,现有的方法通常将实体关系抽取转换成分类问题,将关系用一个没有含义的分类类别编号来表示,从而忽略了关系中的重要语义信息。其次,关系抽取通常被分解成两个子任务来进行,也就是先进行实体抽取再进行关系抽取,或者先提取文本中的关系,再提取文本中的实体,导致了模型冗余和误差传播。最后,部分模型不能很好地利用两个子任务之间的关系,将两个任务分开进行,忽略了这两个子任务之间的联系。因此,能够更好地对文本进行处理并进行结构化信息的提取,成为了需要解决的问题。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种基于Transformer模型的实体关系抽取方法和系统。
根据本发明提供的基于Transformer模型的实体关系抽取方法,包括:
步骤S1:对非结构化文本进行数据处理,得到实体以及对应关系;
步骤S2:根据关系类型,将关系抽取转换成填空的形式;
步骤S3:基于span级别的Transformer结构,构建联合抽取模型,在编码器进行实体抽取,在非自回归解码器进行关系抽取;
步骤S4:在解码器输入关系模板,基于前馈神经网络的复制机制,输出具有对应关系的实体对;
步骤S5:通过两阶段排序策略和负采样机制训练模型,并对联合抽取模型效果的进行测试,并依据测试结果调整联合抽取模型。
优选的,所述步骤S1包括:
步骤S101:对文本进行分句处理,去除重复的句子;
步骤S102:统计文本中出现的关系或者实体的类别,并进行类别映射ID的字典构建;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111101997.6/2.html,转载请声明来源钻瓜专利网。
- 基于Transformer+LSTM神经网络模型的商品销量预测方法及装置
- 一种基于Transformer模型自然场景文字识别方法
- 一种深度Transformer级联神经网络模型压缩算法
- 点云分割方法、系统、介质、计算机设备、终端及应用
- 基于Transformer的中文智能对话方法
- 一种基于改进Transformer模型的飞行器故障诊断方法和系统
- 一种基于Transformer模型的机器翻译模型优化方法
- 基于Transformer和增强交互型MPNN神经网络的小分子表示学习方法
- 基于U-Transformer多层次特征重构的异常检测方法及系统
- 基于EfficientDet和Transformer的航空图像中的飞机检测方法