[发明专利]数据双驱动的台风灾害下电网故障预测方法、装置和设备有效
申请号: | 202111139000.6 | 申请日: | 2021-09-27 |
公开(公告)号: | CN113837477B | 公开(公告)日: | 2023-06-27 |
发明(设计)人: | 谢海鹏;汤凌峰;祝昊;别朝红;李更丰 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06;G06T3/40;G06N3/0442;G06N3/08;G06N3/048 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 白文佳 |
地址: | 710049 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 数据 驱动 台风 灾害 电网 故障 预测 方法 装置 设备 | ||
1.数据双驱动的台风灾害下电网故障预测方法,其特征在于,包括以下步骤:
步骤1,采集台风灾害下电网故障的多元影响数据以及被预测区域电网永久跳闸次数总和,并根据数据的时域变化属性将其划分为静态数据和动态数据,利用静态数据、动态数据和预测区域电网永久跳闸次数总和构建致灾数据集;按照跳闸次数总和分为区域配电网轻度故障,区域配电网重度故障,区域配电网正常运行,将这三种受灾情况类型作为致灾数据集的标签;
步骤2,对致灾数据集进行均衡化处理;
步骤3,利用前馈神经网络提取致灾数据集中静态数据的特征,利用长短期记忆网络和多头自注意力机制提取致灾数据集中动态数据的序列特征,建立台风灾害下电网故障的双通道预测模型,并基于样本均衡处理后的致灾数据集,进行模型参数的求解和调优,最终得到优化后的双通道预测模型;并对其性能进行评估;若性能符合要求则进行步骤4,否则继续进行优化;
步骤4,收集未来台风灾害下预测区域相应的多元影响数据,并构建致灾数据集,将其输入至步骤3中优化后的双通道预测模型,得到未来台风灾害下该研究区域电网故障情况的预测值;
所述步骤2的过程为:用Borderline-SMOTE1算法,根据高维空间中致灾数据集的分布对少数类样本集合进行划分,并针对划分后决策边界处的少数类样本进行样本生成;接着通过判别模型检验训练集和测试集数据分布的差异,并根据差异大小对Borderline-SMOTE1算法进行参数调优,最终应用参数优化后的Borderline-SMOTE1算法均衡致灾数据集;
所述步骤2包括以下步骤:
步骤2.1、使用
步骤2.2、根据轻度故障类样本的
步骤2.3、针对每一个危险类样本,在其
步骤2.4、对于每一个被选择的近邻样本,使用线性插值生成轻度故障类新样本;
步骤2.5、将生成的轻度故障类新样本添加至原致灾训练集中,得到更新后的致灾数据集;
步骤2.6、对更新后的的致灾数据集进行检验,若符合要求则进行步骤3,若不符合要求对Borderline-SMOTE1算法进行调参,直至致灾数据集符合要求;
所述步骤3包括以下步骤:
步骤3.1、基于前馈神经网络从静态数据中提取静态特征;基于长短期记忆网络与多头注意力机制从动态数据中提取动态特征;
步骤3.2、将静态特征和动态特征进行拼接,并通过线性层映射为电网各故障情况类型的预测概率,取最大概率值对应受灾类型为样本的预测故障情况类型,得到预测模型;使用交叉熵函数作为损失函数,衡量预测值与实际值的差异程度;接着通过误差反向传播算法得到交叉熵函数对模型中每一个参数的梯度值;最后结合学习率、批大小以及各层神经元数量,使用小批量Adam算法对预测模型参数进行更新;
步骤3.3、以查准率和查全率为基本指标体系,并引入宏平均机制综合考虑预测模型在致灾测试集中不同类型样本集合中的表现,对预测模型进行评估;
所述步骤3.3包括以下步骤:
步骤3.3.1、根据致灾测试集输入至预测模型后得到的预测值,统计致灾测试集中每个样本是否属于该受灾类型的实际值与预测值,共形成三个二分类混淆矩;
步骤3.3.2、根据矩阵元素得到每一个混淆矩阵对应的一组真阳性、假阳性、真阴性和假阴性,进而得到相应的查准率和查全率;
步骤3.3.3、根据查准率、查全率和
步骤3.3.4、根据宏查准率、宏查全率、宏
2.根据权利要求1所述的数据双驱动的台风灾害下电网故障预测方法,其特征在于,所述步骤1中,静态数据包括森林覆盖率、土地类型、电网的维护程度和人口密度,所述动态数据包括台风中心与区域中心的距离、台风的中心最低气压、台风的近中心最大风速、台风的移动速度、台风的移动方向角、七级风圈半径、预测区域的平均风速和预测区域的降水量。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111139000.6/1.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置