[发明专利]基于门控循环单元网络的工业互联网设备故障预测方法在审

专利信息
申请号: 202111167353.7 申请日: 2021-10-04
公开(公告)号: CN113807023A 公开(公告)日: 2021-12-17
发明(设计)人: 林飞;彭梦杰;易永波;古元;毛华阳;华仲峰 申请(专利权)人: 北京亚鸿世纪科技发展有限公司
主分类号: G06F30/27 分类号: G06F30/27;G06F17/16;G06N3/04;G06N3/08
代理公司: 暂无信息 代理人: 暂无信息
地址: 100095 北京市海淀区高里*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 门控 循环 单元 网络 工业 互联网 设备 故障 预测 方法
【说明书】:

基于门控循环单元网络的工业互联网设备故障预测方法涉及信息技术领域。本发明包括四个步骤,分别是数据预处理、特征提取、模型构建和评估优化。本发明的方法与基于传统机器学习的状态预测相比,对特征工程质量的依赖更少,可以更灵活地分析和处理机器状态的特征;与基于深度学习的状态分析相比,不需要海量训练集,节省了大量的人力和物力成本。

技术领域

本发明涉及信息技术领域。

背景技术

设备的故障诊断与预测一直是学者们关注的研究热点,近几年来,随着机器学习方法的流行,越来越多的研究人员尝试将机器学习的方法应用到设备状态诊断与预测中来。

陈志平等人采用基于奇异值分解优化的局部均值分解法提取电梯轿厢振动时频域特征,然后采用聚类分析进行电梯故障分析,采用回归分析实现电梯故障的预测。范李平等人首先对变电设备故障影响因素进行相关性分析,选择影响因素,然后利用Logistic回归算法进行故障预测。王桂兰等人使用XGBoost算法在风机主轴承故障预测中取得了良好的效果.Leahy等人首先根据领域知识进行特征选择,然后通过随机网格搜索寻找超参数来训练支持向量机进行故障诊断。

然而,以上基于传统机器学习算法的研究仅适用于有限数据样本空间,在实际工业环境中,数据规模特别大,且数据之间具有高度的时间相关性,以上方法并不适用。

随着近几年深度学习的快速发展,基于深度学习的时间序列分析也成为目前设备故障诊断与预测的一个研究热点。国内的周剑飞等人也提出了一种基于LSTM神经网络模型和滑动窗口技术进行设备故障的在线检测,但此方法并没有解决实际工业环境中数据严重倾斜的问题。

现有技术说明

在实际问题中,异常数据往往只占正常数据的极小比例,而当前绝大多数机器学习算法都是基于正负样本比例相差不大的假设,因此严重倾斜的样本数据在某些情况下会导致算法准确性大大降低.例如:欺诈电话检测、信息检索和过滤以及机载直升机变速箱故障监测等问题。

欧式距离也称欧几里得距离,是最常见的距离度量,衡量的是多维空间中两个点之间的绝对距离。

在工业上直接通过设备传感器获得的数据往往具有非常高的相关性,并且由于内外部环境的影响,传感器产生的数据一般都会具有噪声.基于以上原因,直接对传感器数据进行处理会产生算法的运行效率低、准确率不高等问题。

sigmoid神经网络中的激活函数,其作用就是引入非线性。具体的非线性形式,则有多种选择。sigmoid的优点在于输出范围有限,所以数据在传递的过程中不容易发散。当然也有相应的缺点,就是饱和的时候梯度太小。sigmoid还有一个优点是输出范围为(0,1),所以可以用作输出层,输出表示概率。sigmoid求导容易。

发明内容

鉴于现有技术的不足,本发明提供的基于门控循环单元网络的工业互联网设备故障预测方法包括四个步骤,分别是数据预处理、特征提取、模型构建和评估优化;

1)数据预处理

⑴根据正常数据和异常数据比例,即数据倾斜程度确定一个采样比率N,当正常数据大于异常数据时,采样比率为正常数据总数除以异常数据总数,少数类样本为异常数据样本;当正常数据小于异常数据时,采样比率为异常数据总数除以正常数据总数,少数类样本为正常数据样本;设少数类中样本数为T;对于少数类中的一个样本,计算该样本到其余少数类样本的距离,得到其k个近邻样本,样本间的距离指欧式距离;

⑵从这k个近邻样本中任取一个,然后按照计算式生成新的少数类样本:计算式为:,rand(0,1)生成一个0到1之间的随机数;

⑶将步骤2重复N次,对于即可生成N个新样本;

⑷对于少数类中所有样本执行上述操作,为该少数类合成N×T个新样本,少数类样本与多数类样本总数达到一致,即正常数据样本与异常数据样本在总数上达到同样数目;

2)特征提取

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京亚鸿世纪科技发展有限公司,未经北京亚鸿世纪科技发展有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202111167353.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top