[发明专利]一种电子病历文本分类方法在审
申请号: | 202111254783.2 | 申请日: | 2021-10-27 |
公开(公告)号: | CN114049926A | 公开(公告)日: | 2022-02-15 |
发明(设计)人: | 李超凡;马凯 | 申请(专利权)人: | 徐州医科大学 |
主分类号: | G16H10/60 | 分类号: | G16H10/60;G06F16/35;G06F40/30;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京淮海知识产权代理事务所(普通合伙) 32205 | 代理人: | 王波 |
地址: | 221000 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 电子 病历 文本 分类 方法 | ||
一种电子病历文本分类方法,对原始电子病历文本数据集进行预处理操作,形成原始语料库,将原始语料库转换为词表T1,利用词向量工具训练词表T1,将词训练表示为低维稠密的词向量,形成词表T2;然后将文本数据集的每条数据以词编号的形式,对应转换为词向量序列作为输入,以CNN‑Attention神经网络和BiLSTM‑Attention神经网络的双通道结构训练文本特征向量,再将双通道结构的输出进行拼接,作为神经网络的总体输出,最后使用softmax分类器计算文本所属标签类别的概率;本发明能够统筹电子病历文本数据集的局部和全局文本特征,具备较好的稳定性和鲁棒性,有效的提升电子病历文本分类模型的效果。
技术领域
本发明涉及一种分类方法,具体是一种电子病历文本分类方法,属于自然语言处理应用到医疗电子病例技术领域。
背景技术
文本分类是指建立文本与类别之间的关系模型,作为自然语言处理的基础性任务之一,在情感分析、社交平台舆论监测、垃圾邮件识别等方面都具有重大意义。文本分类的主要算法模型,基本上可分为三类:第一类是基于规则、第二类是基于统计和机器学习、第三类是基于深度学习的方法。
第一类基于规则的方法借助于专业人员的帮助,为预定义类别制定大量判定规则,与特定规则的匹配程度作为文本的特征表达,但是受限于人为主观性、规则模板的全面性和可扩展性,最主要的是规则模板完全不具备可迁移性,所以基于规则制定进行文本分类模型并没有得到有效的进展。
第二类基于统计和机器学习的文本分类算法主要包括决策树法(Decision Tree,DT)、朴素贝叶斯算法(Naive Bayesian,NB)、支持向量机算法(SVM)、K-邻近法(K-NearestNeighbors,KNN)等算法。机器学习模型虽然一定程度上提高了文本分类的效果,但是仍需要人为的进行特征选择与特征提取,忽略了特征之间的关联性,通用性以及扩展性较差。
第三类基于深度学习的文本分类算法主要包括卷积神经网络(ConvolutionalNeural Networks,CNN)、循环神经网络(Recurrent Neural Network,RNN)、长短期记忆神经网络(Long Short-Term Memory,LSTM)等,以及各类神经网络模型的变种融合;随着词向量模型的引入,可以将词序列转换为低维稠密的词向量,并包含丰富的语义信息,使得神经网络模型在文本分类任务得到广泛应用。注意力机制的引入,更加有效的对神经网络输出进行特征筛选与特征加权,降低噪声特征的干扰,获取文本的重要特征。目前应用神经网络组合模型的电子病历文本分类,受限于电子病历高维稀疏的文本特征、文本术语密集、语句成分缺失等问题,会造成模型收敛速度较慢、分类效果不佳的问题。
发明内容
本发明的目的是提供一种电子病历文本分类方法,能够统筹电子病历文本数据集的局部和全局文本特征,具备较好的稳定性和鲁棒性,有效的提升电子病历文本分类模型的效果。
为了实现上述目的,本发明提供一种电子病历文本分类方法,包括以下步骤:
步骤1:对原始电子病历文本数据集进行预处理操作,包括句子分词、去除停用词、低频词,从而形成含有文本条目的原始语料库;
步骤2:将原始语料库转换为包括词编号与词的词表T1,利用词向量工具训练词表T1,将词训练表示为低维稠密的词向量,形成包含词编号和词向量的词表T2;
步骤3:利用步骤2中的词表T1将步骤1的原始语料库的文本条目转换为词编号序列,再利用步骤2中的词表T2将步骤1的原始语料库的文本条目转换为词向量序列;
步骤4:利用步骤3所得的词向量序列作为并行结构的CNN-Attention神经网络和BiLSTM-Attention神经网络的输入,训练文本特征向量;
步骤5:拼接步骤4中CNN-Attention神经网络和BiLSTM-Attention神经网络的输出,作为神经网络的整体输出;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于徐州医科大学,未经徐州医科大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111254783.2/2.html,转载请声明来源钻瓜专利网。