[发明专利]一种基于任务分解策略的发热待查辅助鉴别诊断系统有效

专利信息
申请号: 202111311947.0 申请日: 2021-11-08
公开(公告)号: CN113744873B 公开(公告)日: 2022-02-11
发明(设计)人: 李劲松;王执晓;田雨;周天舒 申请(专利权)人: 浙江大学
主分类号: G16H50/20 分类号: G16H50/20;G16H10/20;G06N3/04;G06K9/62
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 刘静
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 任务 分解 策略 发热 待查 辅助 鉴别 诊断 系统
【说明书】:

发明公开了一种基于任务分解策略的发热待查辅助鉴别诊断系统,首次全面且系统地构建了发热待查潜在病因类别层次结构,基于类别层次结构实现了针对发热待查潜在病因进行辅助鉴别诊断的层次分类模型,并能够模拟临床医生的推理逻辑,逐层给出鉴别诊断意见,不仅鉴别范围更全面、系统,同时具有更高的鉴别准确度和更好的临床可解释性,由上向下的逐层推理模式也更加符合临床医生的临床实践习惯;本发明所利用的临床数据都是患者就诊早期极易获取的早期临床表现数据,因此在患者早期就诊阶段就能够基于有限信息给出极具临床价值和可信度的鉴别诊断意见;本发明为发热待查潜在病因的鉴别诊断提供了全面、系统、层次化的解决策略。

技术领域

本发明属于医疗健康信息技术领域,尤其涉及一种基于任务分解策略的发热待查辅助鉴别诊断系统。

背景技术

作为多数临床问题的最常见症状之一,发热不仅是约30%儿童就诊的首要原因,同时在ICU护理的急重症成人患者中发生率也高达75%。尽管随着诊疗技术的进步,大部分发热待查患者可以得到相应的诊断,但在国际范围内仍有约7%-53%的发热待查患者即使通过全面系统的检查也未能得到明确诊断。同时发热待查患者的预后与潜在病因高度相关,部分病程发展较快的患者,若前期得不到准确诊断与恰当治疗,可快速出现危及生命的并发症,因此确诊越晚其预后越差。除此之外,在没有倾向性诊断基础上进行经验性抗感染治疗不仅缺乏循证医学依据,高度依赖临床医生经验,同时也易导致致病菌耐药性的提升以及非靶向性药物和多次转诊等医疗资源的浪费。加之发热待查潜在病因可达200多种,且其临床表现多样、复合度高,因此对发热待查潜在病因的早期鉴别诊断仍然是国内外临床医生所面临的重要挑战,尤其是在医疗资源条件相对落后的地区。

由于发热待查潜在病因复杂,且不同地区、不同时期和不同年龄的患者在不同配置的医疗资源条件下其病因构成比例都会有所差异,因此直接通过传统机器学习手段进行潜在病因多分类,往往存在类别间样本不均衡、分类问题复杂度高的固有缺陷,难以确保分类精度。

现有技术方案[申请公布号:CN112768057A,发明名称:鉴别儿童发热待查病因的系统]提出的发热待查潜在病因鉴别方案只针对儿童群体,因此其潜在病因范围相对较小,系统鉴别难度低。除此之外,该方案描述的鉴别系统只利用了年龄、钠离子、氯离子、乳酸脱氢酶、球蛋白、红细胞压积、C反应蛋白及白细胞酯酶8项指标对发热待查患者的潜在病因是否为感染性进行判断,因此发热待查潜在病因鉴别诊断内容不完整,且8项指标所能表示的特征空间较小,临床适应性较差。

现有技术方案[申请公布号:CN107785075A,发明名称:基于文本病历的小儿发热疾病深度学习辅助诊断系统]描述的发热疾病深度学习辅助诊断方案同样只针对小儿群体,且该系统直接对30种常见小儿发热疾病进行分类,而非针对发热待查潜在病因。此外,该方案主要是强调对临床文本病历数据的利用,通过自然语言处理技术对其进行文本特征提取以作为小儿发热鉴别诊断的特征空间,不涉及其他时序、结构化数据内容。

目前针对发热待查潜在病因进行辅助鉴别诊断的技术方案相对缺乏,该研究技术领域仍处于探索阶段。现有技术方案存在如下缺陷:

1.现有技术方案均只针对儿童群体的发热相关疾病进行鉴别诊断,儿童群体的发热相关疾病类型与范围相较于整体发热待查潜在病因的类型和范围仍有很大差别,且临床实际场景中发热待查群体主要是以成年人为主。

2.现有技术方案均只局限于感染性疾病与非感染性疾病的鉴别或只局限于易区分的小部分疾病,发热待查潜在病因的鉴别诊断覆盖范围不完整,因此临床实际适用性和可扩展性差。

3.现有技术方案只是对小部分发热相关疾病进行分类,所依赖的临床数据并非患者早期就诊的非特异性数据,而对发热待查患者进行辅助鉴别诊断最具有临床价值的便是在患者就诊早期,在临床医生基于有限临床表现数据难以得出倾向性诊断的情况下给予临床医生以辅助鉴别诊断意见。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202111311947.0/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top