[发明专利]一种基于深度学习的指挥控制网络关键节点识别方法在审
申请号: | 202111332644.7 | 申请日: | 2021-11-11 |
公开(公告)号: | CN114143210A | 公开(公告)日: | 2022-03-04 |
发明(设计)人: | 畅鑫;李艳斌;赵研;杜宇峰 | 申请(专利权)人: | 中国电子科技集团公司第五十四研究所 |
主分类号: | H04L41/14 | 分类号: | H04L41/14;H04L41/142;G06N3/04;G06N3/08 |
代理公司: | 河北东尚律师事务所 13124 | 代理人: | 王文庆;曲佳颖 |
地址: | 050081 河北省石家*** | 国省代码: | 河北;13 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 学习 指挥 控制 网络 关键 节点 识别 方法 | ||
本发明提供了一种基于深度学习的指挥控制网络关键节点识别方法,所述方法包括(1)构建指挥控制网络关键节点数据集,(2)构建指挥控制网络关键节点识别神经网络模型,(3)基于训练集对指挥控制网络关键节点识别神经网络模型进行学习训练,(4)将数据集输入到指挥控制网络关键节点识别神经网络模型进行测试,识别指挥控制网络的关键节点。本发明提供的基于深度学习的指挥控制关键节点识别方法,能够准确地判断指挥控制关键节点。所述方法自动化程度高,结构新颖,流程简洁,具有广泛的工业实用性。
技术领域
本发明涉及一种基于深度学习的指挥控制网络关键节点识别方法,属于深度学习领域。
背景技术
指挥控制网络关键节点识别是支撑指挥控制体系博弈的重要组成部分和决定作战结果的关键因素。通过干扰或者打击指挥控制网络关键节点,能有有效抑制敌方对于战场态势的获取,从而压制敌方的决策空间,使得我方在指挥控制体系博弈中获得信息优势。
现阶段大多指挥控制网络关键节点识别方法主要依赖于专业知识设计目标函数和检测特征,在《面向结构洞的指挥控制网络关键节点识别方法》一文中,在提取指挥控制网络关键节点特征方面具有局限性,需要大量人工参与,并且受到专业背景的影响,导致检测效果有限;同时,传统节点识别方法的评判指标固定,如公开号为CN113411197A的专利《一种无先验拓扑信息的非合作关键节点识别方法》,无法通过学习机制不断提升检测效果;在《基于改进灰狼优化的复杂网络重要节点识别算法》一文中,基于优化算法的指挥控制网络关键节点识别方法的计算量较大,会较大幅度提高指挥控制的决策产生时间,从而影响博弈效果。
发明内容
本发明避免背景技术中的问题提出了一种基于深度学习的指挥控制网络关键节点识别方法,该方法构建了适用于指挥控制网络关键节点识别的深度学习卷积神经网络,通过将指挥控制网络中节点的互通次数和通信类型转换为多维数据矩阵,便于神经网络提取识别特征。
本发明采用的技术方案为:
一种基于深度学习的指挥控制网络关键节点识别方法,包括以下步骤:
步骤1:构建指挥控制网络关键节点数据集;
步骤2:基于最小指挥控制网络关键节点识别神经网络模块和分类神经网络模块,构建指挥控制网络关键节点识别神经网络模型;
步骤3:基于训练集对指挥控制网络关键节点识别神经网络模型进行学习训练;
步骤4:将测试集输入到指挥控制网络关键节点识别神经网络模型进行测试,识别指挥控制网络的关键节点。
其中,步骤1中,构建指挥控制网络关键节点数据集的具体方式为:
步骤1-1:基于指挥控制网络结构、关键指挥控制节点和通信方式,统计在t次通信下,任意两节点之间,不同通信方式下的互通次数其中n和m分别为通信节点标号,n,m∈N,N为通信节点数,l表示通信方式种类索引,l∈L,L为通信方式种类,t为设定值;
步骤1-2:将互通次数数据转换成多维矩阵形式组成样本I:
步骤1-3:将关键通信节点标号y作为对应样本的标签;
步骤1-4:在指挥控制网络结构相同但关键指挥控制结点不同的情况下,重复步骤1-1到1-3T次,组成数据集,包括样本数据集和标签数据集;其中T为设定值;
样本数据集X为:
标签数据集Y为:
Y=[y1…yT]T
步骤1-5:按照设定比例μ,将数据集切分为学习数据集和测试数据集,二者数量分别为和其中表示向上取整。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国电子科技集团公司第五十四研究所,未经中国电子科技集团公司第五十四研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111332644.7/2.html,转载请声明来源钻瓜专利网。