[发明专利]一种基于小样本学习的知识图谱实体链接预测方法在审

专利信息
申请号: 202111424146.5 申请日: 2021-11-26
公开(公告)号: CN114153985A 公开(公告)日: 2022-03-08
发明(设计)人: 刘泽超;马万朋;孙建国;刘瑞男;武俊鹏;申林山 申请(专利权)人: 哈尔滨工程大学
主分类号: G06F16/36 分类号: G06F16/36;G06F16/35;G06F40/30;G06N3/04;G06N3/08
代理公司: 暂无信息 代理人: 暂无信息
地址: 150001 黑龙江省哈尔滨市南岗区*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 样本 学习 知识 图谱 实体 链接 预测 方法
【说明书】:

发明属于元学习与知识表示学习技术领域,具体涉及一种基于小样本学习的知识图谱实体链接预测方法。本发明利用元学习的方式在一个任务中只利用少数三元组信息完成关系信息的提取以及快速更新;考虑数据集中的三元组会存在复杂的头尾实体数量对应关系,通过预先统计出完整三元组中的头尾实体数量,根据头尾实体所占比例确定负样本的生成方式;通过知识表示学习的传统评分函数将实体向量和关系向量以共处同一平面的方式进行数学计算。本发明通过将更新后的关系信息向量映射到超平面,并将实体向量进行超平面投影分解,使得模型能够有效缓解训练过程中过度收敛的情况。

技术领域

本发明属于元学习与知识表示学习技术领域,具体涉及一种基于小样本学习的知识图谱实体链接预测方法。

背景技术

现有多数的机器学习模型都依赖于大量的数据进行训练,然而针对特殊领域或者复杂的任务时,少量的样本数据限制了已有模型的能力,使得模型无法达到相应的效果。研究人员针对小样本的问题提出了众多解决办法,在计算机视觉领域、图像分类任务中已经形成了许多性能优异的模型,但是在知识图谱领域中发展较为缓慢。以三元组形式表示的知识图谱中普遍存在长尾现象,只有极少数的三元组关系拥有大量对应的头尾实体,在小样本数据的条件下进行知识图谱实体链接预测的任务亟待解决。

知识表示学习利用机器学习技术获取每个实体或者关系的向量化表达,能够将描述的文本对象表示为一个低维的实值向量,利用对象在空间的相对距离,反映它们之前的语义关系。由于内容被映射到向量空间中,相应的算法可以使用数值计算,并且基于向量的表示会更加适用于机器学习算法。

元学习的目的是让模型本身获得一种学习能力,这种能力能够保证模型自动学习到一些模型训练之外可以学习到的知识,包括模型的超参数、神经网络的初始参数、神经网络的结构和优化器等元知识。在小样本学习中,元学习从大量的先验任务中学习到元知识,利用以往的先验知识来指导模型在新任务中的更快的学习。在基于元学习的知识图谱补全的任务可理解为实体链接预测问题,通过训练集中真实的三元组数据训练元学习器,使得元学习器能够获得以下能力:从完整的三元组中抽取关系信息,转移到缺失的三元组中,并且可以仅仅通过少量实例来加速任务中的学习过程。

发明内容

本发明的目的在于解决知识图谱中常见的长尾现象带来的三元组数量不足以支撑现有模型训练从而难以推断出缺失三元组的问题,提供一种基于小样本学习的知识图谱实体链接预测方法。

一种基于小样本学习的知识图谱实体链接预测方法,包括以下步骤:

步骤1:在知识库中提取大量的由头实体、关系、尾实体构成的三元组,将这些三元组整理为后续模型训练所需的数据集;

步骤2:根据元学习的数据集处理标准,将整体数据集分为两个部分MTrain训练集和MTest测试集,为保证基于小样本的模型训练正确性,要求

步骤3:定义以向量方式表达的三元组为(h,r,t);其中,h,t分别表示头、尾实体向量;r表示关系向量;将步骤2中的MTrain和MTest根据实体的自身语义复杂度以动态向量维度的方式进行初始化;

步骤4:对于MTrain中具有相同关系r的三元组加入到任务Taskr中,定义T是所有关系任务的集合,Taskr∈T;

步骤5:根据步骤4中的T抽取任意一项任务Task′r,对于多数Task′r会包含多个三元组信息,将Task′r中的多个三元组划分出支持集Sr和查询集Qr

步骤6:对步骤5中的支持集Sr中某个实体对使用基于元学习的机器学习方法进行关系信息提取;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202111424146.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top