[发明专利]一种基于联邦学习的配电站故障预测方法在审

专利信息
申请号: 202111522563.3 申请日: 2021-12-13
公开(公告)号: CN114219147A 公开(公告)日: 2022-03-22
发明(设计)人: 杨平化 申请(专利权)人: 南京富尔登科技发展有限公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06F30/27;G06K9/62;G06N3/04;G06N3/08;G06Q50/06
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 陆志斌
地址: 211500 江苏省南*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 联邦 学习 配电 故障 预测 方法
【权利要求书】:

1.一种基于联邦学习的配电站故障预测方法,其特征在于,包括如下步骤:

S1、故障预测数据预处理,利用历史数据来进行时间序列的建模,再通过建立的模型来预测未来12小时内可能存在的故障问题,具体步骤如下:

S1-1、以每个配电站为客户端,进行数据收集,并将获得的数据进行制作数据集,之后将数据集分为训练集D1、测试集D2和验证集D3三个组成部分;

S1-2、通过采用深度学习算法进行配电站故障预测,根据获取到的配电站的相关特征参数,并将其映射为向量的形式;

S1-3、数据样本不平衡处理,采用ADASYN算法根据数据样本分布自适应生成少数类新样本;

S1-4、对于收集的数据采用最大值最小值标准化,将数据映射到[0,1]之间,标准化函数为:式中xt是t时刻的收集到的配电站的相关特征参数,xmax是收集到的样本参数中的最大值,xmin是是收集到的样本参数中的最小值,是t时刻收集到的配电站的相关特征参数标准化结果;

S2、基于空洞卷积和图注意力网络,建立本地模型,将图注意力机制处理过后的特征参数,输入到LSTM网络,进行时间序列的特征提取,以提高配电站故障预测的时长,最后利用将LSTM的输出至全连接层,建立联邦学习的本地模型,具体步骤如下:

S2-1、通过使用空洞率,来调整空洞卷积的视野大小;

S2-2、采用图注意力机制,通过结合注意力机制与图卷积网络,在更新图节点特征表示的过程中关注到邻居节点对其的影响度,其中图注意力机制网络通过堆叠图注意力层来构造;

S2-3、将图注意力机制处理之后的时序特征向量输入到LSTM网络,基于时序的配电站特征参数需要充分利用时间和其他参数之间的相关性;

S2-4、在LSTM网络的输出处,采用一个全连接层,来将输出的信息利用支持向量机来实现,支持向量机为简单的输入层、隐藏层和输出层三层结构,其中输入为LSTM的输出,隐藏层为100个神经元,输出的大小同输入,最终MLP的输出层为本地模型输出,至此本地模型建立完成定义为wlocals

S3、服务器端进行联合训练模型,实现在不侵犯各个配电站数据的情况下,根据各个本地模型建立的聚合模型,来进行配电站故障预测,具体步骤如下:

S3-1、建立在线抽样方法,使得每一轮通信中选取相应的设备组合后可使全局模型的各类别测试性能趋于平衡,之后设计设备子集的选择算法,通过充分利用设备组合后的数据,充分发挥联邦学习中客户端配电站数据的价值,通过上述的过程更新局部模型参数之后,上传到终端服务器中,进行聚合生成全局模型;

S3-2、服务器端类别估计算法,类别估计方案只需基于设备更新后传回的模型,以及全局服务器上少量的辅助数据集,同时训练过程中不同类别的训练数据量与相应类别上模型参数梯度更新的欧式范数的平方具有近似的比例关系,表述为公式式中L表示分类的损失函数,为梯度计算符号,||·||2表示范数计算,ms和ml分别表示训练集D1中第s和l类的样本数量,其中s≠l∈[C],C表示客户端全部数据样本类别,Es(·)表示对第s类数据的期望运算符,El(·)表示对第l类数据的期望运算符;

S3-3、在联邦学习中类别不平衡的场景下,由于每一轮通信中设备子集的选取有组合性,设备选择算法基于类别估计方案,利用每轮通信中聚合后的全局模型以及当前设备上数据类别分布的统计信息,选取与全局模型各类别测试性能偏移程度最互补的设备组合;

S3-4、采用均方误差作损失函数作为指标,来确定联合建模的预测准确性。

2.根据权利要求1所述的一种基于联邦学习的配电站故障预测方法,其特征在于,所述S1-1中,配电站按照功率大小分为民用配电站和企业配电站,所述民用配电站在数据采集过程中,以每个配电站为客户端,每10分钟收集一次数据,全天可获得144条数据信息,所述企业配电站在数据采集过程中,以每个配电站为客户端,每5分钟收集一次数据,全天可获得288条数据信息。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京富尔登科技发展有限公司,未经南京富尔登科技发展有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202111522563.3/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top