[发明专利]一种基于深度学习技术的机车车辆闸片磨耗检测方法在审

专利信息
申请号: 202111593416.5 申请日: 2021-12-23
公开(公告)号: CN114463258A 公开(公告)日: 2022-05-10
发明(设计)人: 胡平;史时喜;赵留辉;侯小祥;严飞;周航博 申请(专利权)人: 中铁第一勘察设计院集团有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06T7/80;G06V10/26
代理公司: 西安新思维专利商标事务所有限公司 61114 代理人: 李罡
地址: 710043 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 学习 技术 机车车辆 磨耗 检测 方法
【说明书】:

发明公开了一种基于深度学习技术的机车车辆闸片磨耗检测方法。现有闸片图像检测技术存在准确度低以及场景适应性差的问题。本发明通过设计AI语义分割网络,获得闸片的像素点边缘坐标及闸片类型;利用亚像素边缘提取算法,得到亚像素边缘坐标;将亚像素边缘坐标输入标定计算模块,并基于概率统计的异常值剔除算法,得到闸片厚度。本发明基于人工智能算法,算法适应性好,可以适应不同的光照、不同的闸片类型,检测准确率高,便于推广应用。

技术领域

本发明属于计算机检测技术领域,特别涉及一种基于深度学习技术的机车车辆闸片磨耗检测方法。

背景技术

闸片为机车车辆制动系统的核心部件,当闸片磨损到一定程度就会失效,影响机车车辆的制动性能和运行安全,因此需对机车车辆闸片厚度进行定期检测和更换。人工测量存在劳动强度大、操作不便、效率低、检测准确度低和数据误读等问题,且易发生闸片超限服役或提前更换的现象。

基于非接触式传统图像算法进行测量的优势在于不再依赖于人工,而是通过图像算法进行自动检测,可以保障测量一致性;但不同的车型会装不同类型的闸片,即便是同一种车型,也存在安装的闸片类型不统一的情况;传统的图像算法在闸片定位问题上可以使用模板匹配、特征提取、特征匹配等技术,针对闸片厚度分割问题上可以采用基于阈值、区域生长、区域分裂合并等技术,但由于光照、污水、油渍等干扰,对图像检测技术造成很大影响,同时算法的检测正确率不高。

发明内容

本发明提供一种基于深度学习技术的机车车辆闸片磨耗检测的方法,解决传统图像检测技术准确度低以及场景适应性差的问题。

为了达到上述目的,本发明所采用的技术方案为:

一种基于深度学习技术的机车车辆闸片磨耗检测方法,具体包括如下步骤:

步骤一:根据检测需求,通过AI目标检测网络定义闸片磨耗体区域,并对闸片进行数据标注;

步骤二:设计AI语义分割网络,利用所述闸片标注数据进行模型训练,并保存训练好的模型;

步骤三:设备采集到的二维闸片图像数据通过无线或者有线的方式,传输至AI闸片语义分割网络,所述AI闸片语义分割网络输出闸片的像素点边缘坐标及闸片类型;

步骤四:利用亚像素边缘提取算法,得到所述二维闸片图像数据像素点边缘坐标的亚像素边缘坐标;

步骤五:将所述二维闸片图像数据的亚像素边缘坐标输入标定计算模块;所述标定计算模块分离出所述二维闸片图像数据亚像素边缘坐标中左右边缘匹配的坐标点,组成直线段;所述标定计算模块通过已经标定好的参数,将所述直线段的像素长度转换成物理长度;最后基于概率统计的异常值剔除算法,剔除所述直线段中的异常直线段,得到所有保留直线段的长度平均值即为闸片厚度;

步骤六:将所述闸片厚度输入闸片厚度超限报警模块,根据报警阈值决策出是否存在闸片厚度到限的情况。

具体地,所述步骤二包括:

1)采用20层残差编码结构进行闸片分割,所述20层残差编码结构的通道数为[64,256,512,512];

2)采用联合分割损失函数进行模型训练,所述联合分割损失函数为Loss=iouloss+diceloss+focalloss,所述iouloss负责整块目标区域的监督,所述diceloss负责边缘分割的监督,所述focalloss负责像素级的分割监督;

3)保存训练好的模型。

具体地,所述亚像素边缘提取算法包括如下步骤:

步骤一:边缘检测滤波算子进行边缘检测

1)将所述二维闸片图像数据像素点边缘坐标进行灰度化处理;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中铁第一勘察设计院集团有限公司,未经中铁第一勘察设计院集团有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202111593416.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top