[发明专利]基于深度学习算法的地下结构裂纹病害判别方法在审
申请号: | 202111599047.0 | 申请日: | 2021-12-24 |
公开(公告)号: | CN114581764A | 公开(公告)日: | 2022-06-03 |
发明(设计)人: | 朱磊;李东彪;沈才华;刘向阳;闫星志 | 申请(专利权)人: | 中交基础设施养护集团有限公司;河海大学;中交南京交通工程管理有限公司 |
主分类号: | G06V20/10 | 分类号: | G06V20/10;G06V10/774;G06V10/764;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 赵淑芳 |
地址: | 100102 北京市朝阳*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 深度 学习 算法 地下 结构 裂纹 病害 判别 方法 | ||
本发明公开了一种基于深度学习算法的地下结构裂纹病害判别方法,包括如下步骤:基于Mask R‑CNN深度学习算法,获取优化的初始参数,针对大量地下结构裂纹图像的深度学习,获取图像裂纹的智能识别模型,实现对任意裂纹的自动识别;针对自动识别的裂纹,采取骨架提取算法和函数拟合方法获得裂纹长宽等几何特征参数的计算方法;结合裂纹产生原因分析,提出采用裂纹类型、单位面积上裂纹数量、最大裂纹宽度、最长裂纹长度多因素组合考虑的地下结构损伤病害等级判别。本发明可以有效的实现地下结构的裂纹病害检测智能化,具有远距离、无接触、快速便捷、准确度高的优点。
技术领域
本发明涉及裂纹判别,具体涉及一种基于深度学习算法的地下结构裂纹病害判别方法。
背景技术
随着地下工程建设的不断推进,越来越多的地下结构将步入检测维修阶段,未来地下结构维护和管理任务将极其艰巨。在定期检查中,裂纹(即裂缝)检查处于首要位置。裂纹检查项目包括位置、长度、宽度和发展情况。传统的裂缝检测主要依靠人力完成,测量员必须贴近裂缝表面,当受到空间限制时必须依靠脚手架等工具的帮助才能完成,效率低下、人力物力成本较高、测量准确性较低,无法满足未来大规模地下结构安全检测的任务需求。
发明内容
发明目的:本发明的目的是提供一种基于深度学习算法的地下结构裂纹病害判别方法,解决现有裂纹检测依靠人工,效率低下,准确性低的问题。
技术方案:本发明所述的基于深度学习算法的地下结构裂纹病害判别方法,包括以下步骤:
(1)收集地下结构裂纹图像作为数据集,对图像进行预处理,采用交叉验证法将数据集划分为训练集和验证集;
(2)采用训练集的数据训练Mask R-CNN模型,通过学习训练集上裂缝特征不断调整连接权参数,直到达到设置的训练次数,则停止训练,得到Mask R-CNN模型及其连接权参数,通过该模型在验证集上的损失函数值来确定算法的超参数;
(3)采用最终Mask R-CNN模型检测待测的裂缝图像,从待测的裂缝图像随机采样出子图像,分别使用Mask R-CNN模型进行检测,并采用非极大抑制的方法进行筛选是否有裂缝,并输出裂缝掩膜图像;
(4)对裂缝掩膜图像进行二值化处理,利用骨架提取算法得到裂缝的骨架图像,统计骨架图像中像素值非0的像素点个数,得到裂缝的像素长度,获取裂缝骨架图像中像素非0点的坐标,将每个非0像素点看作离散点进行二次函数拟合,得到裂缝骨架的二次函数表达式,根据得到的二次函数表达式求曲线上点的法线方程,统计法线与裂缝掩膜相交部分非0像素点个数即为裂缝像素宽度,计算裂缝平均像素宽度参数值,根据裂缝平均像素宽度参数值和像素长度得到裂缝的面积;
(5)根据计算得到的裂纹几何特征确定地下结构裂纹病害等级。
优选的是,所述步骤(1)中图像预处理包括放大、旋转、裁剪去除噪声保留裂缝部分,将数据按8:2划分测试集,再利用k折交叉验证法划分为训练集和验证集。
所述步骤(2)中损失函数包括RPN网络的两个损失函数,MRCNN的两个损失函数,以及MASK分支的损失函数,具体如下:
L=Lrc+Lrb+Lcls+Lbox+Lmask,
式中Lrc表示RPN网络的分类损失函数;Lrb表示RPN网络边界框回归损失函数;Lcls表示目标分类损失函数;Lbox表示预测框回归损失函数;Lmask表示生成掩模图像损失函数。
其中RPN部分和MRCNN部分的分类损失使用交叉熵损失函数,而回归损失均采用SmoothL1函数;MASK分支的损失函数采用掩膜二进制交叉熵损失函数;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中交基础设施养护集团有限公司;河海大学;中交南京交通工程管理有限公司,未经中交基础设施养护集团有限公司;河海大学;中交南京交通工程管理有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111599047.0/2.html,转载请声明来源钻瓜专利网。