[发明专利]一种暗光图像降噪方法及装置有效

专利信息
申请号: 202111641889.8 申请日: 2021-12-29
公开(公告)号: CN114418873B 公开(公告)日: 2022-12-20
发明(设计)人: 王林;周晓;朱才志;汝佩哲 申请(专利权)人: 英特灵达信息技术(深圳)有限公司;合肥英特灵达信息技术有限公司
主分类号: G06T5/00 分类号: G06T5/00;G06N3/04;G06N3/08
代理公司: 北京柏杉松知识产权代理事务所(普通合伙) 11413 代理人: 项京;高莺然
地址: 518101 广东省深圳市宝安区新安街道海*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 图像 方法 装置
【说明书】:

本申请实施例提供了一种暗光图像降噪方法及装置,方法包括:获取RAW域暗光图像;对RAW域暗光图像进行预设图像增强变换,将变换后的图像输入预先训练的降噪网络模型,得到输出图像;其中,降噪网络模型是根据样本图像训练的,样本图像包括:模拟坏点暗光图像和无噪图像;对输出图像进行预设图像增强变换的逆变换,得到降噪图像。能够显著降低图像坏点对暗光图像降噪过程产生的影响,提高暗光图像的降噪质量。

技术领域

发明涉及图像处理技术领域,特别是涉及一种暗光图像降噪方法及装置。

背景技术

随着计算机视觉技术和光学影像技术的快速发展,利用视频图像采集设备获取图像或视频,并对图像或视频进行处理的方式,被广泛应用于安防、海防、智能交通等各个方面。

然而,当成像设备处于暗光条件下时,由于光线严重不足,会导致采集到的图像包含非常多的噪声,使得图像不清晰,画质差,进而,会降低后期图像处理结果的准确度。因此,此类图像在进行分析处理之前需要进行降噪处理,而在降噪过程中,图像存在的坏点,会严重影响图像降噪质量。

成像设备的成像元件通常是CCD(Charge-coupled Device,电荷耦合元件)或CMOS(Complementary Metal-Oxide-Semiconductor,互补金属氧化物半导体),包含数百万个感光单元,如果某个感光单元损坏,则成为坏点,图像中对应像素位置的像素值会明显异于周围像素点。对于暗光图像,坏点通常为高亮坏点。

在基于深度学习的暗光图像RAW域降噪技术中,本身图像的像素值就相对较小,输入数据中的高亮坏点,经过卷积神经网络的感受野(receptive-field,RF)机制放大,会由单点影响扩散至几个像素甚至几十个像素范围,严重降低了图像的视觉质量。参见图1,图1为采用现有技术进行降噪处理后RAW域暗光图像中坏点影响的一种示意图,降噪处理前的原始暗光图像中有一个高亮坏点,如图1所示,经过降噪处理后,坏点已经影响周边的多个像素点。

虽然很多图像信号处理(Image Signal Processing,ISP)的算法中包含了坏点校正这一环节,但由于坏点的多样性和复杂性,基于传统的图像处理方法一般不能完全消除,而且,去坏点的强度较大,会导致图像产生类似于中值滤波的平滑效果,损害图像的边缘细节。

发明内容

本发明实施例的目的在于提供一种暗光图像降噪方法及装置,以实现显著降低图像坏点对暗光图像降噪过程产生的影响,提高暗光图像的降噪质量。

具体技术方案如下:

本申请提供了一种暗光图像降噪方法,所述方法包括:

获取RAW域暗光图像;

对所述RAW域暗光图像进行预设图像增强变换,将变换后的图像输入预先训练的降噪网络模型,得到输出图像;其中,所述降噪网络模型是根据样本图像训练的,所述样本图像包括:模拟坏点暗光图像和无噪图像;

对所述输出图像进行所述预设图像增强变换的逆变换,得到降噪图像。

可选的,所述对所述RAW域暗光图像进行预设图像增强变换的步骤,包括:

依次对所述RAW域暗光图像进行归一化、gamma变换。

可选的,采用如下步骤训练所述降噪网络模型:

获取初始神经网络模型和所述样本图像;

将进行所述预设图像增强变换后的模拟坏点暗光图像输入所述初始神经网络模型;

基于所述初始神经网络模型输出结果和进行所述预设图像增强变换后的无噪图像,计算损失值;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于英特灵达信息技术(深圳)有限公司;合肥英特灵达信息技术有限公司,未经英特灵达信息技术(深圳)有限公司;合肥英特灵达信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202111641889.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top