[发明专利]基于注意力和关系检测的孪生网络目标跟踪方法及系统在审
申请号: | 202210263162.9 | 申请日: | 2022-03-17 |
公开(公告)号: | CN114821390A | 公开(公告)日: | 2022-07-29 |
发明(设计)人: | 李爱民;刘笑含;刘腾;李稼川;刘德琦 | 申请(专利权)人: | 齐鲁工业大学 |
主分类号: | G06V20/40 | 分类号: | G06V20/40;G06V10/774;G06V10/764;G06V10/80;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 黄海丽 |
地址: | 250353 山东*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 注意力 关系 检测 孪生 网络 目标 跟踪 方法 系统 | ||
1.基于注意力和关系检测的孪生网络目标跟踪方法,其特征是,包括:
获取视频序列,将第一帧作为模板图像,当前帧作为搜索图像;
在模板分支中,将模板图像输入到ResNet-50骨干网络中,进行特征提取;采用注意力模块对最后三层提取的特征分别进行特征增强处理,得到三个模板注意力特征;
在搜索分支中,根据前一帧的跟踪结果裁剪出搜索图像,将搜索图像输入到ResNet-50骨干网络中,进行特征提取;采用注意力模块对最后三层提取的特征分别进行特征增强处理,得到三个搜索注意力特征;
将三个模板注意力特征和三个搜索注意力特征,分别对应输入到目标跟踪模块Siamese RPN中得到三个分类结果和三个回归结果;将三个分类结果和三个回归结果分别进行加权融合,得到融合后的分类结果和融合后的回归结果;
基于融合后的回归结果,输入到关系检测器中以度量回归结果中目标和预测图像的关系,得到回归分支的分数图;将回归分支的分数图与分类分支的分数图进行点乘,以过滤掉背景中的干扰;将过滤掉干扰的分数图经过卷积操作,得到最后的分类得分,并获取最大响应位置对应的预测框。
2.如权利要求1所述的基于注意力和关系检测的孪生网络目标跟踪方法,其特征是,所述采用注意力模块对最后三层提取的特征分别进行特征增强处理,得到三个模板注意力特征;具体是指:
对ResNet-50网络中的covn3_x层、covn4_x层、covn5_x层提取的特征f3(z)、f4(z)、f5(z)用注意力模块进行特征增强,生成模板注意力特征f3(z’)、f4(z’)、f5(z’)。
3.如权利要求1所述的基于注意力和关系检测的孪生网络目标跟踪方法,其特征是,所述采用注意力模块对最后三层提取的特征分别进行特征增强处理,得到三个搜索注意力特征;具体包括:
对ResNet-50网络中的covn3_x层、covn4_x层、covn5_x层提取的特征f3(x)、f4(x)、f5(x)用注意力模块进行特征增强,生成搜索注意力特征f3(x‘)、f4(x‘)、f5(x‘)。
4.如权利要求1所述的基于注意力和关系检测的孪生网络目标跟踪方法,其特征是,所述注意力模块,工作原理:
将从ResNet-50骨干网络中提取的的特征图分成多个组,采用通道分离,分成两个分支并行处理各组的子特征;
对于通道注意力分支,使用全局平局池化生成通道统计量,用一对参数来缩放和移动通道向量;
对于空间注意力分支,使用group norm生成空间统计量,用类似于通道注意力分支生成相关特征;然后将两个分支结合起来;随后将所有子特征聚集;使用通道混合实现不同子特征之间的通信;最后输出注意力特征。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于齐鲁工业大学,未经齐鲁工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202210263162.9/1.html,转载请声明来源钻瓜专利网。