[发明专利]噪声抑制方法、装置、设备及存储介质有效

专利信息
申请号: 202210355203.7 申请日: 2022-04-01
公开(公告)号: CN114936571B 公开(公告)日: 2023-05-05
发明(设计)人: 林川;丁建;周航 申请(专利权)人: 西南交通大学
主分类号: G06F18/10 分类号: G06F18/10;G06F18/213
代理公司: 深圳市恒程创新知识产权代理有限公司 44542 代理人: 孔德丞
地址: 610000*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 噪声 抑制 方法 装置 设备 存储 介质
【权利要求书】:

1.一种噪声抑制方法,其特征在于,所述方法包括:

获取原始含噪信号;

利用互补集合经验模态分解算法将所述原始含噪信号分解为多个本征模态分量;任一所述本征模态分量具有时域特征信息;

基于多个所述本征模态分量的时域特征信息,从多个所述本征模态分量中确定出第一分界分量,并利用所述第一分界分量将多个所述本征模态分量划分为至少一个噪声主导本征模态分量以及至少一个第一信号主导本征模态分量;

利用互补集合经验模态分解算法将所述第一分界分量以及与所述第一分界分量相邻的第一信号主导本征模态分量分解为多个本征模态子分量,并根据多个所述本征模态子分量的时域特征信息,筛选出第二信号主导本征模态分量;

将至少一个所述第一信号主导本征模态分量中的剩余信号主导本征模态分量和所述第二信号主导本征模态分量进行叠加,得到抑制噪声后的去噪信号;所述剩余信号主导本征模态分量,为至少一个所述第一信号主导本征模态分量中除去与所述第一分界分量相邻的第一信号主导本征模态分量的部分;

所述本征模态子分量包括噪声本征模态子分量以及信号本征模态子分量,所述利用互补集合经验模态分解算法将所述第一分界分量以及与所述第一分界分量相邻的第一信号主导本征模态分量分解为多个本征模态子分量,包括:

利用互补集合经验模态分解算法,将所述第一分界分量分解为多个噪声本征模态子分量;

将阶数比所述第一分界分量阶数大1的第一信号主导本征模态分量分解为多个信号本征模态子分量;

任一所述本征模态子分量具有时域特征信息,所述根据多个所述本征模态子分量的时域特征信息,筛选出第二信号主导本征模态分量,包括:

针对任一所述噪声本征模态子分量,根据所述原始含噪信号中包含的噪声和信号之间的时域特征差异,从对应的时域特征信息中确定出对应的第二目标时域特征信息;

根据多个所述噪声本征模态子分量的第二目标时域特征信息,确定出第二分界分量;

针对任一所述信号本征模态子分量,根据所述原始含噪信号中包含的噪声和信号之间的时域特征差异,从对应的时域特征信息中确定出对应的第三目标时域特征信息;

根据多个所述信号本征模态子分量的第三目标时域特征信息,确定出第三分界分量;

将阶数大于第二分界分量阶数的噪声本征模态子分量以及阶数大于第三分界分量阶数的信号本征模态子分量作为所述第二信号主导本征模态分量;

所述将至少一个所述第一信号主导本征模态分量中的剩余信号主导本征模态分量和所述第二信号主导本征模态分量进行叠加,得到抑制噪声后的去噪信号,包括:

根据第一公式,将所述第一信号主导本征模态分量中的剩余信号主导本征模态分量和所述第二信号主导本征模态分量进行叠加,得到所述去噪信号;其中,所述第一公式为:

其中,y(t)为所述去噪信号,a为所述第一分界分量阶数,b为所述第二分界分量阶数,d为所述第三分界分量阶数,n为所述本征模态分量的最大阶数,m为所述噪声本征模态子分量的最大阶数,l为所述信号本征模态子分量的最大阶数,IMFi为第i阶本征模态分量,IMFa,j为第j阶噪声本征模态子分量,IMFa+1,k为第k阶信号本征模态子分量。

2.根据权利要求1所述的方法,其特征在于,所述基于多个所述本征模态分量的时域特征信息,从多个所述本征模态分量中确定出第一分界分量之前,所述方法还包括:

根据所述原始含噪信号中包含的噪声和信号之间的时域特征差异,从所述时域特征信息中确定出第一目标时域特征信息;

所述基于多个所述本征模态分量的时域特征信息,从多个所述本征模态分量中确定出第一分界分量,包括:

基于多个所述本征模态分量的第一目标时域特征信息,从多个所述本征模态分量中确定出所述第一分界分量。

3.根据权利要求2所述的方法,其特征在于,所述利用所述第一分界分量将多个所述本征模态分量划分为至少一个噪声主导本征模态分量以及至少一个第一信号主导本征模态分量,包括:

将阶数小于第一分界分量阶数的本征模态分量以及所述第一分界分量作为所述噪声主导本征模态分量;

将阶数大于所述第一分界分量阶数的本征模态分量作为所述第一信号主导本征模态分量;所述阶数依据所述互补集合经验模态分解算法的分解次序确定。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南交通大学,未经西南交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210355203.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top