[发明专利]特定区域的图像描述生成方法、装置、设备及存储介质在审

专利信息
申请号: 202210416674.4 申请日: 2022-04-20
公开(公告)号: CN114972774A 公开(公告)日: 2022-08-30
发明(设计)人: 舒畅;陈又新 申请(专利权)人: 平安科技(深圳)有限公司
主分类号: G06V10/42 分类号: G06V10/42;G06V10/44;G06V10/774;G06V10/80;G06V10/82;G06N3/04
代理公司: 广州嘉权专利商标事务所有限公司 44205 代理人: 梁国平
地址: 518000 广东省深圳市福田区福*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 特定 区域 图像 描述 生成 方法 装置 设备 存储 介质
【说明书】:

本申请涉及人工智能技术,提供了一种特定区域的图像描述生成方法、装置、设备及存储介质,方法包括:获取全局图像;基于预训练的第一特征提取网络模型对全局图像进行全局特征提取,得到全局图像特征图;基于预训练的第二特征提取网络模型对全局图像特征图进行局部特征提取,得到局部图像特征图;分别对全局图像特征图和局部图像特征图进行维度统一提取,得到全局图像特征向量和局部图像特征向量;对全局图像特征向量和局部图像特征向量进行融合,得到最终图像特征向量;基于预训练文本生成网络模型对最终图像特征向量进行文本生成,得到特定区域描述文本,通过上述技术方案能够提高特定区域的图像文本描述的准确率。

技术领域

本申请实施例涉及但不限于图像处理技术领域,尤其涉及一种特定区域的图像描述生成方法、装置、设备及存储介质。

背景技术

图像描述生成是图像处理中具有重要应用价值的一个领域;对于图像描述生成,当前多为针对整幅图像进行描述文本生成或者在特定区域下的文本生成;其中,基于编码-解码模型能够较好地抽取图像全局特征但是对于局部特征的提取就会有所遗漏,基于目标检测模型可以提取目标所在局部区域特征,但是欠缺局部特征之间的联系,进而使得特定局部区域的图像文本描述不够正确。

发明内容

以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。

为了解决上述背景技术中提到的问题,本申请实施例提供了一种特定区域的图像描述生成方法、装置、设备及存储介质,能够提高特定区域的图像文本描述的准确率。

第一方面,本申请实施例提供了一种特定区域的图像描述生成方法,包括:

获取全局图像;

基于预训练的第一特征提取网络模型对所述全局图像进行全局特征提取,得到全局图像特征图;

基于预训练的第二特征提取网络模型对所述全局图像特征图进行局部特征提取,得到局部图像特征图;

分别对所述全局图像特征图和所述局部图像特征图进行维度统一提取,得到对应所述全局图像特征图的全局图像特征向量和对应所述局部图像特征图的局部图像特征向量;

对所述全局图像特征向量和所述局部图像特征向量进行融合,得到最终图像特征向量;

基于预训练的文本生成网络模型对所述最终图像特征向量进行文本生成,得到特定区域描述文本。

根据本申请提供的实施例的特定区域的图像描述生成方法,至少具有如下有益效果:首先获取全局图像;接着基于预训练的第一特征提取网络模型对获取到的全局图像进行全局特征提取处理,进而得到全局图像特征图;接着基于预训练的第二特征提取网络模型对全局图像特征图进行局部特征提取,进而得到局部图像特征图;接着分别对上述得到的全局图像特征图和局部图像特征图进行维度统一提取处理,进而分别得到全局图像特征向量和局部图像特征向量;接着对全局图像特征向量和局部图像特征向量进行融合处理,得到最终图像特征向量;最后将最终图像特征向量输入至预训练的文本生成网络模型进行文本生成,从而得到特定区域描述文本。本实施例将全局图像特征向量和局部图像特征向量进行融合处理,使得后续的文本生成过程既包括全局图像的相关信息又包括局部图像的相关信息,使得全局图像特征向量和局部图像特征向量两者之间建立联系,进而能够提高特定区域的图像文本描述的准确率。

根据本申请的一些实施例,所述基于预训练的第二特征提取网络模型对所述全局图像特征图进行局部特征提取,得到局部图像特征图,包括:

基于预训练的第二特征提取网络模型对所述全局图像特征图进行选择性搜索,得到至少一个候选框图;

对各个所述候选框图分别进行第一特征提取,得到各个所述候选框图对应的候选特征图;

基于所述候选特征图对所述候选框图进行回归调整,得到精确候选框图;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安科技(深圳)有限公司,未经平安科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210416674.4/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top