[发明专利]一种基于关键影响因子的全局时空气象农灾预测方法在审

专利信息
申请号: 202210441892.3 申请日: 2022-04-25
公开(公告)号: CN114819344A 公开(公告)日: 2022-07-29
发明(设计)人: 胡曦然;荣欢;杨钧茗;骆维瀚;钱敏峰;马廷淮 申请(专利权)人: 南京信息工程大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q10/06;G06Q50/02;G06Q50/26;G06F40/279;G06N3/04;G06N3/08
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 罗运红
地址: 224002 江苏省盐城*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 关键 影响 因子 全局 时空 气象 预测 方法
【说明书】:

发明公开了一种基于关键影响因子的全局时空气象农灾预测方法,包括以下步骤:对异构数据按照时间与空间进行融合,融合成时空数据立方体;收集特定农业灾害指标的历史数据;选出对农业灾害影响最大的指标组合作为影响因子;将时空数据立方体转化为无纲量平面;从云平台时空数据立方体中按时间与空间提取气象与农业关联数据分组;在二维特征平面集合基础上构建带有全局时空特性的农业灾害预测的第二神经网络,计算农灾发生概率。本发明针对全局时空气象农灾预测方法的改进,基于关键影响因子的全局时空气象农灾预测方法,能够从时间与空间两方面对特定区域与时间段气象与农业观测值进行全局分析,更准确预测未来可能发生的农业灾害。

技术领域

本发明涉及农业气象灾害分析领域,特别涉及一种基于关键影响因子的全局时空气象农灾预测方法。

背景技术

随着我国农业生产模式转型和各类技术手段的提升,我国气象行业累计数据体量达到了大数据的海量性特征,农业气象灾害的各种预测方法和系统不断涌现。目前利用大数据技术在地球科学领域积极探索,证明了机器学习、深度学习等方法在地球科学大数据上应用的可行性,为地球科学研究提供了更多的思路与方法。使用数据密集型方法来驱动农业技术,为量化和理解农业作业环境中的过程创造新机会。

农业气象数据集领域各异、形式多样,需要有机地融合各个数据集中的知识。为了能够处理多个来源的异构灾害数据,需要解决数据集成方案和摄入问题,这些解决方案分为相互交互的组件,难以确保以高度协调的方式最佳地提供与灾害有关的信息。基于不同数据的个体预测的神经网络方法相比于初始输入,相关的误差要低得多,不同数据的神经网络融合为一个稳定的状态提供了更佳的解决方案。

现阶段农灾预测研究中已经出现大数据高精准辅助预报业务:如使用对数线性模型在一年时间尺度上预测干旱等级,拟合气象站数据;或采用判别分析方法处理多尺度干旱灾害风险,预测中国东北朝阳市的玉米产量损失;或建立基于气候指数的支持向量回归模型,预测江水蒸散指数。上述预报所考虑的分析技术属于相对直观的、启发式的方法,预测性能指标表明预测值和观测值之间有弱到中等的关系,但海量的历史气象数据并没有发挥它们全部的价值。

现有的气象农灾预测方法存在以下问题:影响因素的选择范围过窄,仅使用少量特征进行预测,致使预测结果难以保证;对多模态数据的处理方法粗糙,无法有效利用异构数据;对时空数据的挖掘不足。

发明内容

发明目的:针对以上问题,本发明目的是提供一种基于关键影响因子的全局时空气象农灾预测方法,实现同时从时间与空间两方面对特定区域与时间段气象与农业观测值的全局分析。

技术方案:本发明的一种基于关键影响因子的全局时空气象农灾预测方法,包括如下步骤:

步骤1,将农业气象异构数据上传至云平台,利用第一神经网络对异构数据按照时间与空间进行融合,融合成时空数据立方体,对时空数据立方体进行聚合;

步骤2,对聚合后的时空数据立方体进行分析并获取关键特征数据,从关键特征数据中收集特定农业灾害指标的历史数据;

步骤3,对特定农业灾害指标的历史数据采用极端随机树方法,实施集成化回归分析,预测出农业灾害指标,筛选出对农业灾害影响最大的指标组合作为影响因子;

步骤4,根据影响因子从云平台抽取与极端天气、农业灾害相关的文本、图像对应的时空数据立方体,利用LSTM神经网络处理文本特征,利用卷积神经网络处理图像特征,将处理后的文本特征和图像特征输入到激活函数Softmax中形成一个向量,作为联合特征表示;以该联合特征表示为输入,以历史农业灾害指标预测为辅助学习任务,构建辅助学习网络,通过最小化预测误差,进一步训练特征提取器以加大对数据的解析力度;

步骤5,从云平台中抽取代表极端天气和农业灾害数据的时空数据立方体,将时空数据立方体转化为由若干无纲量序列组成的无纲量平面;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210441892.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top