[发明专利]一种基于连铸漏钢传播行为的模板匹配识别方法在审
申请号: | 202210495353.8 | 申请日: | 2022-05-07 |
公开(公告)号: | CN114842225A | 公开(公告)日: | 2022-08-02 |
发明(设计)人: | 刘宇;徐志强;王旭东 | 申请(专利权)人: | 东北电力大学 |
主分类号: | G06V10/75 | 分类号: | G06V10/75 |
代理公司: | 北京专赢专利代理有限公司 11797 | 代理人: | 张婧 |
地址: | 132011 吉*** | 国省代码: | 吉林;22 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 连铸漏钢 传播 行为 模板 匹配 识别 方法 | ||
本发明公开了一种基于连铸漏钢传播行为的模板匹配识别方法,属于钢铁冶金领域,其特点是,包括:建立连铸漏钢样本数据库、获取连铸漏钢的温度速率热像图、提取连铸漏钢的区域特征、判定连铸漏钢的传播行为、获取不同传播行为的连铸漏钢模板、基于传播行为的连铸漏钢识别。本发明将钢铁连铸过程中漏钢传播行为与模板匹配算法相结合,具有科学合理、适用性强、效果佳等有优势,实现了对真伪连铸漏钢的快速识别和区分,提高了连铸漏钢的识别率,为连铸漏钢在线检测提供可靠方法。
技术领域
本发明属于钢铁冶金连铸技术领域,是一种基于连铸漏钢传播行为的模板匹配识别方法。
背景技术
漏钢是连铸生产过程中的重大事故,不仅会造成巨大的经济损失,而且会损坏连铸机设备,中断正常生产。为了避免连铸漏钢的发生,漏钢预报方法受到了冶金工作者的广泛关注。
普遍认为,连铸漏钢形成于弯月面附近,由于结晶器润滑不良、摩擦力过大而导致的坯壳撕裂是诱发漏钢的直接原因。受限于连铸结晶器的特殊工况和不可见特点,通常利用结晶器热电偶温度信号,捕捉连铸漏钢的典型温度模式,建立漏钢预报模型,然而,这种基于一维温度信号的漏钢识别和预测方法,在生产实践中逐渐暴露出一些不足,主要表现为漏报和频繁误报等问题。究其根本,主要是由于连铸漏钢形成、发展过程具有空间和时间传播特征,而一维温度信号很难全面地捕捉连铸漏钢的空间和时间传播特征。
专利文件CN111570748公开了一种基于图像处理的结晶器漏钢预报方法,该专利通过在待测结晶器的侧壁布置测温点进行测温的基础上,构建测温点位置、测温点温度以及测温点温升速率的第一三维空间坐标和第二三维空间坐标,以预设标准温度和标准温升速率分别对第一三维空间坐标和第二三维空间坐标切片,得到温度切面和温升速率切面,再根据温度切面和温升速率切面的出现情况以及切面参数变化,按照预设预警规则,进行预警提示,克服了现有漏钢算法中漏报率和误报率的矛盾,在降低漏报率的同时不会提高误报率。然而,在实际生产过程中,结晶器内测点的温度受保护渣性能、钢水流动等因素影响,可能会不断波动,其对应的空间图像切片可能会出现部分异常干扰区域,从而导致该方法预报精度有所下降。
专利文件CN113935416一种多状态结晶器的连铸漏钢预报方法,该专利结合热电偶温度时序数据的特点,通过时间卷积网络对结晶器内部各个热电偶温度在时间维度上的变化进行特征识别,这种方式能更好的对温度的时间依赖关系进行建模,与传统处理时间序列使用循环神经网络不同,其通过门控的方式与时间卷积网络结合来有效缓解训练过程中出现的梯度消失与爆炸现象。同时还考虑了板坯拉速这一外部特征,更精准的对黏结特征进行判断,提高了漏钢预报的准确度。但是该方法不确定性较多,且对工艺、钢种变化适应性不强,容易导致误报的发生。
发明内容
本发明目的是克服现有技术的不足,提出一种科学合理、适用性强和效果佳的基于连铸漏钢传播行为的模板匹配识别方法,所述方法将连铸漏钢传播行为与模板匹配相结合,对连铸漏钢进行准确、高效识别,为连铸漏钢在线检测提供必要条件。
为达到上述目的,本发明采用的技术方案为:一种基于连铸漏钢传播行为的模板匹配识别方法,其主要包括以下步骤:
1)建立连铸漏钢样本数据库
①利用结晶器在线监控系统,获取连铸过程的实时数据;
②根据连铸现场记录,获取漏钢实例,提取漏钢时刻的浇注数据,建立连铸漏钢样本数据库;
2)获取连铸漏钢的温度速率热像图
基于实测的浇注数据,利用插值算法和计算机图形学技术,建立了温度与颜色空间的对应关系,将每个铜板的温度反映到一个平面上,实现结晶器铜板温度变化速率的热成像;
3)提取连铸漏钢的区域特征
①获取连铸漏钢热区域的横坐标最小值Xhot-min和最大值Xhot-max;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北电力大学,未经东北电力大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202210495353.8/2.html,转载请声明来源钻瓜专利网。