[发明专利]数控加工表面粗糙度预测方法及装置有效

专利信息
申请号: 202210593505.8 申请日: 2022-05-27
公开(公告)号: CN114897028B 公开(公告)日: 2023-04-07
发明(设计)人: 王冬;王立平;李学崑;蔡恩磊 申请(专利权)人: 清华大学
主分类号: G06F18/10 分类号: G06F18/10;G06N3/0442;G06N3/0464;G06N3/048;G06F18/25;G01M13/045
代理公司: 北京清亦华知识产权代理事务所(普通合伙) 11201 代理人: 黄德海
地址: 100084*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 数控 加工 表面 粗糙 预测 方法 装置
【说明书】:

本申请公开了一种数控加工表面粗糙度预测方法及装置,其中,方法包括:获取数控加工过程中的主轴电流信号、工件振动信号和声发射信号;将主轴电流信号、工件振动信号和声发射信号输入至预先训练的表面粗糙度预测模型,得到对应的实际概率向量,其中,表面粗糙度预测模型由带自注意力机制的卷积长短期记忆神经网络训练得到;根据实际概率向量确定预设的表面粗糙度区间中对应区间,并基于对应区间得到数控加工表面的实际粗糙度。由此,解决了相关技术中,物理模型与实际加工过程存在偏离,导致表面粗糙度预测发生偏差,表面粗糙度预测精度较差,泛用性不高的技术问题。

技术领域

本申请涉及智能制造技术领域,特别涉及一种数控加工表面粗糙度预测方法及装置。

背景技术

表面粗糙度直接影响工件的耐磨、耐腐蚀、耐疲劳等性质,包括车削、铣削和磨削在内的数控加工,均将表面粗糙度作为衡量加工质量的一项核心指标,因此,在工件加工完成后,需要对工件的表面粗糙度进行检测,以保证工件符合质量标准。

传统的表面粗糙度检测方法是在数控加工后利用专业的仪器对工件表面进行测量,这样的方法具有较高的准确性,但由于增加了专门的检测环节,降低了整体生产效率,同时,针对一些具有曲面的大型零件,难以直接对其表面粗糙度进行测量。

为弥补传统的表面测粗糙度检测方法的不足,相关技术提出了表面粗糙度的预测方法:

1)基于材料去除机理建立表面粗糙度物理模型,并依据此模型对表面粗糙度进行预测,该方法所建立的模型通常基于若干假设,且建模过程复杂,加之实际数控加工环境变化复杂,往往使得理论物理模型与实际过程偏离,导致表面粗糙度的预测精度不足;

2)基于传统数据回归的方法对表面粗糙度进行预测,该方法通常以工艺参数作为输入,这意味着相同工艺参数对应一致的表面粗糙度,这显然与实际工况不符。在实际数控加工中,即便工艺参数一致,相同工件不同位置的表面粗糙度也会发生变化。

综上所述,相关技术中物理模型与实际加工过程偏离,表面粗糙度预测精度较差,泛用性不高,有待改进。

发明内容

本申请是基于发明人对以下问题的认知和发现作出的:

随着深度学习技术的发展与应用,基于机器学习对表面粗糙度进行智能预测的方法展现出了较好的潜力,该方法通常以某种物理信号作为输入,通过训练提升预测精度,是目前的研究热点。

然而,现有的智能预测方法选用加工后的某种测量信号或单一的过程信号,在粗糙度表征信号的选择上较为单一,同时使用的预测模型也为简单的神经网络。

综上所述,本申请提供一种数控加工表面粗糙度预测方法及装置,基于机器学习智能预测表面粗糙度,并对粗糙度信号表征和预测模型方面进行相应改善,以解决相关技术中,物理模型与实际加工过程存在偏离,导致表面粗糙度预测发生偏差,表面粗糙度预测精度较差,泛用性不高的技术问题。

本申请第一方面实施例提供一种数控加工表面粗糙度预测方法,包括以下步骤:获取数控加工过程中的主轴电流信号、工件振动信号和声发射信号;将所述主轴电流信号、工件振动信号和声发射信号输入至预先训练的表面粗糙度预测模型,得到对应的实际概率向量,其中,所述表面粗糙度预测模型由带自注意力机制的卷积长短期记忆神经网络训练得到;以及根据所述实际概率向量确定预设的表面粗糙度区间中对应区间,并基于所述对应区间得到所述数控加工表面的实际粗糙度。

可选地,在本申请的一个实施例中,概率向量位数与表面粗糙度区间个数相等,其中,所述根据所述实际概率向量确定预设的表面粗糙度区间中对应区间,并基于所述对应区间得到所述数控加工表面的实际粗糙度,包括:比较所述实际概率向量各位上的数值,将位于数值最大位对应的表面粗糙度区间作为所述对应区间。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210593505.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top