[发明专利]一种大脑纤维束异常区域精准定位系统有效
申请号: | 202211276171.8 | 申请日: | 2022-10-19 |
公开(公告)号: | CN115359305B | 公开(公告)日: | 2023-01-10 |
发明(设计)人: | 张瑜;孙超良;王凯凯;王志超;张欢;钱浩天 | 申请(专利权)人: | 之江实验室 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/30;G06V10/25;G06T7/73;G06T7/00;A61B5/055;A61B5/00 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 刘静 |
地址: | 310023 浙江省杭州市余*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 大脑 纤维 异常 区域 精准 定位 系统 | ||
本发明公开了一种大脑纤维束异常区域精准定位系统,该系统从扩散磁共振数据中提取全脑的纤维连接,通过自定义纤维束通路或者基于大脑纤维束模板提取纤维束通路。将选定的纤维束通路投射到全脑的纤维连接结果上并进行精细地分段。用扩散磁共振数据计算各向异性分数,平均扩散率,神经突内容积比以及方向分散度等影像学指标,从而得到每条纤维束通路每个节点上的影像学指标,用机器学习的方法在疾病组和健康组之间用这些影像学指标做分类,可以精准定位不同疾病下哪些纤维束通路上的哪些节点发生了异常变化。本发明采用球面约束反卷积重建方法,估计每个体素上的纤维走向函数,来重建每个体素上的纤维分布,可以有效解决纤维交叉的问题。
技术领域
本发明涉及神经影像数据分析领域,尤其涉及一种大脑纤维束异常区域精准定位系统。
背景技术
扩散加权磁共振是一种定量的磁共振成像方法。传统磁共振是通过对磁场中的人体施加某种特定频率的射频脉冲,使人体内的氢质子受到激励而产生共振现象。脉冲停止后,质子在弛豫过程中产生磁共振信号,通过对磁共振信号的编码、接收和重建后,生成静态的结构图像。而扩散加权磁共振测量的是人体内水分子的扩散运动,也就是测量预定扩散时间内水的位移。
在匀质的水中,水分子的扩散运动是一个三维的随机运动,在各个方向的扩散程度相同,这种现象称为扩散的各向同性,而在人体中,水分子在三维空间中的扩散运动会受到各种限制,如果水分子的扩散运动被细胞膜、大分子等阻碍,那么水分子的位移就会减少,水分子的受阻扩散。比如在有髓鞘的神经纤维束中,水分子沿着纤维走向的扩散运动会远大于向髓鞘方向的扩散,这种现象称为扩散的各向异性。
基于这个原理,扩散张量成像(diffusion tensor imaging, DTI)模型是对磁共振扩散加权成像技术的发展与改进。扩散张量模型是一个三维的立体模型,量化了水分子扩散的各向异性的信号,利用扩散敏感梯度脉冲将水分子扩散效应扩大,来研究不同组织中水分子扩散运动的差异,使脑组织的微结构能够更加精细地显示。神经突方向分散度和密度成像(Neurite orientation dispersion and density imaging, NODDI) 模型把微环境分为了三种情况:细胞内、细胞外、脑脊液。每一种微环境影响水分子弥散的方式都不同,可用于评估轴突和树突微结构的复杂性,可以反映脑组织中不同组织的信息。
扩散磁共振成像通过测量水分子扩散差异来检测大脑的微结构特性以及纤维束走向。利用这些扩散特性,可以得到一些常用的参数。比如可以通过扩散张量成像,计算各向异性分数(Fractional anisotropy, FA)、平均扩散率(Mean diffusivity, MD)等指标,也可通过神经突方向分散度和密度成像,计算神经突内容积比(Intra-neurite volumefraction, ICVF)以及方向分散度(Orientation dispersion index, ODI)等。并且可以通过全脑层面的纤维追踪结果,提取出相应的纤维束通路。其中,FA反映了扩散的各项异性部分与扩散张量总值的比值,可用于显示脑白质内神经传导束的走行方向,可以观察组织结构的完整性和连通性,利于对各种疾病引起的白质纤维束损害程度及范围的判断。MD反映了水分子单位时间内扩散运动的范围,比如扩散受限的水分子增加,这就会引起该区域MD的下降,ICVF可以反映神经密度,比如轴突的密度。ODI可以量化神经突方向的离散度,比如扇形纤维和交叉纤维。这些影像学指标为研究各类疾病提供了多种角度的解读。
纤维追踪是进行纤维束通路分析的重要方法。传统基于弥散张量成像的纤维追踪方法根据张量主方向以及预设的偏转角阈值、FA阈值等参数对全脑纤维束进行构建,而后通过设定ROI的方式追踪特定纤维束,并计算纤维束的数目、平均FA等相关指标,但是无法解决交叉纤维的问题。
支持向量机(Support vector machines, SVM)是一种常用的机器学习分类模型,SVM学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。通过SVM得到特征的权重,可以反映哪些纤维束的哪些节点在疾病组和健康组之间有显著的差异。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于之江实验室,未经之江实验室许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202211276171.8/2.html,转载请声明来源钻瓜专利网。