[发明专利]一种脑血管图像-标签两阶段生成方法、装置及存储介质在审

专利信息
申请号: 202211368903.6 申请日: 2022-11-03
公开(公告)号: CN115719335A 公开(公告)日: 2023-02-28
发明(设计)人: 李孟歆;李松昂;朴东辉;吕凡 申请(专利权)人: 沈阳建筑大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/12;G06N3/08;G06N3/0464;G06N3/045
代理公司: 沈阳之华益专利事务所有限公司 21218 代理人: 黄英华
地址: 110180 辽*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 脑血管 图像 标签 阶段 生成 方法 装置 存储 介质
【说明书】:

发明一种脑血管图像‑标签两阶段生成方法,首先将有标签脑血管图像及无标签脑血管图像分别进行处理,获得训练集1及训练集2,然后构建脑血管图像‑标签两阶段生成对抗网络模型,采用训练集1及训练集2对该模型进行训练,最后将N维噪声输入到训练完成的模型,获得完整的脑血管图像;本发明利用伪标签与真实数据输入两阶段生成对抗网络模型分别生成脑血管图像与标签,生成出的脑血管图像在血管周围体素更清晰,血管标签连通性强;应用于分割任务中的数据增强可以使从脑血管图像分割出的脑血管结构精度更高,便于辅助后续的病理图像诊断;同时,伪标签的使用缓和了医学图像标签数据不足的情况。

技术领域

本发明属于图像生成技术领域,具体涉及一种脑血管图像-标签两阶段生成方法、装置及存储介质。

背景技术

脑血管图像分割任务中,有监督的深度学习分割方法需要使用大量成对的图像-标签数据训练网络模型。然而大量的训练数据难以获取,网络模型分割性能受到了数据量不足的制约。尽管裁剪、翻转等传统的数据增强方法在一定程度上解决了数据量不足问题,但是此类方法产生的样本多样性有限,难以包含训练样本以外的解剖变异,因此需要一种自动图像生成方法大量生成所需的训练数据。

现有的脑血管图像-标签生成方法为将随机噪声输入生成器直接生成图像和标签,即单阶段生成方式。这种方式生成的图像-标签数据分布接近于训练数据的总体分布,然而在样本多样性得到提升的同时牺牲了一部分的图像局部信息。在脑血管分割任务中,分割网络更关注血管及周边部分的体素,这部分体素决定了分割血管的边缘。图像中血管处的纹理结构不够清晰,生成的标签连通性较差,无法保证生成血管部分体素的精确度。同时,现有的方法进行的训练依然需求庞大的数据量。

发明内容

针对现有技术的不足,本发明提出一种脑血管图像-标签两阶段生成方法,包括以下步骤:

步骤1、将有标签脑血管图像的图像数据及标签数据进行预处理,并随机生成N维噪声,将N维噪声、预处理后的图像数据及标签数据做为训练集1;

步骤2、将无标签脑血管图像进行拓扑结构约束分割出伪标签,将伪标签数据做为训练集2;

步骤3、构建脑血管图像-标签两阶段生成对抗网络模型,所述模型包括串级的标签生成网络及图像生成网络;

步骤4、将训练集1及训练集2分别输入脑血管图像-标签两阶段生成对抗网络模型进行训练,获得训练完成的脑血管图像-标签两阶段生成对抗网络模型;

步骤5、将N维噪声输入到训练完成的脑血管图像-标签两阶段生成对抗网络模型,获得图像-标签数据对,进而生成完整的脑血管图像。

进一步地,所述的步骤1具体如下:对图像数据及标签数据进行归一化处理及数据增强,并利用随机分布生成N维噪声,将N维噪声、数据增强后的图像数据及标签数据均转换为并行训练形式,构成训练集1。

进一步地,步骤2所述的拓扑结构约束采用U-Net结合混合损失函数约束。

进一步地,所述的步骤3中,

标签生成网络:包括标签生成器及标签判别器;用于将随机噪声的分布映射至脑血管标签的分布并进行训练,生成脑血管标签发送到图像生成网络;

图像生成网络:包括图像生成器及图像判别器;用于对接收到的脑血管标签添加纹理结构,并通过训练增加纹理的真实性,进而生成完整的脑血管图像。

进一步地,所述的标签生成网络中,

标签生成器由多个解码模块及一个特征融合模块组成,每个解码模块包含一个固定步长的三维反卷积,并连接批次归一化(Batch Normalization)及Leaky ReLU激活函数;最后一层特征融合模块采用固定步长的三维反卷积,输出通道大小固定的图像并使用激活函数限定输出值范围;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于沈阳建筑大学,未经沈阳建筑大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202211368903.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top