[发明专利]一种角膜缘定位方法及其系统有效
申请号: | 202211451710.7 | 申请日: | 2022-11-21 |
公开(公告)号: | CN115496808B | 公开(公告)日: | 2023-03-24 |
发明(设计)人: | 李劲嵘;李根;封檑;周榆松 | 申请(专利权)人: | 中山大学中山眼科中心 |
主分类号: | G06T7/73 | 分类号: | G06T7/73;G06T5/00;G06T7/00;G06T7/11;G06T7/13;G06V10/26;G06V10/30;G06V10/44;G06V10/764 |
代理公司: | 深圳智趣知识产权代理事务所(普通合伙) 44486 | 代理人: | 李兴生 |
地址: | 510000 *** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 角膜 定位 方法 及其 系统 | ||
1.一种角膜缘定位方法,其特征在于,包括如下:
基于角膜缘在眼球转动时的多种形态,构建多个分辨率、多个尺寸、多种眼球转动形态下的卷积核,并对多个卷积核进行编号;
对输入图像进行包括边缘提取在内的预处理,得到仅涉及眼部区域的、多个分辨率下的去噪边缘图像;
通过各个最低分辨率下的卷积核对最低分辨率下的去噪边缘图像进行卷积处理,得到n个定位样本;其中,每个定位样本中包括角膜缘的像素坐标、卷积核编号以及卷积核与去噪边缘图像的匹配程度;n为大于1的自然数;
对所述定位样本进行样本扩展,并基于预设分辨率下的卷积核和去噪边缘图像对扩展的样本进行筛选,重新得到n个最优样本;
以n个最优样本、各个卷积核以及最高分辨率下的去噪边缘图像为输入,进行基于最近点关联的迭代椭圆优化流程,得到包括角膜缘的圆心位置和角膜缘椭圆的几何参数在内的定位结果。
2.根据权利要求1所述的角膜缘定位方法,其特征在于,基于最近点关联的迭代椭圆优化流程具体包括:
将n个最优样本进一步优化精简为m个最优样本,m为小于n大于0的自然数;
根据每个最优样本中角膜缘的像素坐标,将该最优样本对应的卷积核坐标变换到最高分辨率下的去噪边缘图像中,以使m个卷积核投影到最高分辨率下的去噪边缘图像中;
对m个卷积核的角膜缘部分和最高分辨率下的去噪边缘图像求图像交集,获得一组属于角膜缘的边缘点,将该组边缘点作为备选椭圆点集合;
对备选椭圆点集合进行最小二乘优化获得拟合椭圆,在拟合椭圆的基础上,进行椭圆参数迭代优化,直至获得最优的椭圆参数,分析拟合出的最优椭圆得到定位结果。
3.根据权利要求2所述的角膜缘定位方法,其特征在于,在进行椭圆参数迭代过程中,每次迭代会更新备选椭圆点集合和拟合椭圆,计算备选椭圆点集合与拟合椭圆之间的残差;
判断每次迭代产生的残差是否小于预设误差阈值;
若是,则根据拟合出的椭圆得到角膜缘的圆心位置和角膜缘椭圆的几何参数;
若否,则计算备选椭圆点集合中每个备选椭圆点到当前拟合椭圆的距离,选取距离小于预设距离阈值的点作为新的备选椭圆点,从而重新构建备选椭圆点集合,继续进行椭圆参数迭代。
4.根据权利要求1所述的角膜缘定位方法,其特征在于,所述卷积核包括外围区域、角膜缘区域和内部区域,所述角膜缘区域位于所述外围区域和所述内部区域之间;
所述外围区域的权重为-1*外围区域像素面积的倒数;
所述角膜缘区域的权重为1*角膜缘区域像素面积的倒数;
所述内部区域的权重为-1*内部区域像素面积的倒数。
5.根据权利要求1所述的角膜缘定位方法,其特征在于,所述预处理还包括:
若输入图像中存在非眼部区域,则在边缘提取之前,对输入图像进行眼部分割,以得到仅涉及眼部区域的图像;
将仅涉及眼部区域的图像作为原始图像;
采用canny算法对所述原始图像构建金字塔,得到由多张分辨率不等的边缘图像所构成的边缘金字塔;
对边缘金字塔进行边缘提取,利用低分辨率下低噪声、低精度的边缘图像作为掩膜,来获得高分辨率下低噪声、高精度的去噪边缘图像。
6.根据权利要求5所述的角膜缘定位方法,其特征在于,设边缘金字塔中x张边缘图像按分辨率从低到高排序依次为A1、A2、A3……Ax;
所述边缘提取包括:
对边缘图像An进行上采样,得到边缘图像A(n+1)的边缘掩膜B(n+1),n=1,2,3……x;
求解边缘图像A(n+1)和边缘掩膜B(n+1)的交集,获得边缘图像A(n+1)的去噪边缘图像C(n+1);
对去噪边缘图像C(n+1)进行上采样,得到边缘图像A(n+2)的边缘掩膜B(n+2);
求解边缘图像A(n+2)和边缘掩膜B(n+2)的交集,获得边缘图像A(n+2)去噪边缘图像C(n+2);
循环上述步骤,直到获得边缘图像Ax的去噪边缘图像Cx。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学中山眼科中心,未经中山大学中山眼科中心许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202211451710.7/1.html,转载请声明来源钻瓜专利网。