[发明专利]孪生网络基于局部可信模板进行模板更新的视频跟踪方法有效

专利信息
申请号: 202211646915.0 申请日: 2022-12-21
公开(公告)号: CN115861379B 公开(公告)日: 2023-10-20
发明(设计)人: 张斌;陈耿;杨焕海;谢青松;安志勇;宋英杰 申请(专利权)人: 山东工商学院
主分类号: G06T7/246 分类号: G06T7/246;G06N3/0464
代理公司: 济南宝宸专利代理事务所(普通合伙) 37297 代理人: 韩玉美
地址: 264000 山东*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 孪生 网络 基于 局部 可信 模板 进行 更新 视频 跟踪 方法
【说明书】:

发明公开了一种孪生网络基于局部可信模板进行目标模板更新的视频跟踪方法,属于视频跟踪技术领域,其包括确定视频序列中图像的总帧数,根据初始帧图像确定被跟踪目标,将视频序列分为前后两部分,分别采用不同的模板更新方法,都考虑了初始模板和当前模板,对于帧数较少的前部分还考虑了初始模板和当前模板之间的其余模板构成的累计模板,充分利用了以前帧图像的历史信息,而对于帧数较多的后部分则选用了峰距率大的可信模板,摒弃了累计模板中的噪音信息,增强了更新模板的可信度,提高目标跟踪的准确度。

技术领域

本发明属于视频跟踪技术领域,具体涉及一种孪生网络基于局部可信模板进行目标模板更新的视频跟踪方法。

背景技术

目标跟踪是计算机视觉的前沿课题,在自动驾驶、监控、行人检测和无人机等领域被广泛应用。近期,基于孪生网络的跟踪方法取得了巨大的进步,其核心思想是把目标跟踪任务转化为相似度匹配任务:以视频初始帧中的目标作为模板,以视频后续帧作为搜索帧,对模板特征和搜索特征进行互相关计算,得到响应图,从响应图的峰值信息中便可以得出目标的位置信息。

现有的孪生网络跟踪方法,仅以第一帧的目标作为模板,难以应对目标在复杂场景下的外观变化,从而丢失目标的位置。为了使跟踪器适应目标变化,提高跟踪的准确性,Zhang,L.等人提出了一种基于孪生网络具有自适应更新模板功能的视觉跟踪方法UpdateNet。UpdateNet通过学习模板更新函数实现对模板的自适应更新,极大的提高了跟踪性能。虽然上述跟踪方法考虑了每一帧的真值模板,提供了可靠的历史信息,但当遇到相似目标干扰、尺度变换等挑战时,仍会导致模型漂移,使目标跟踪失去鲁棒性和准确性。

因此,如何提高目标跟踪的准确性,仍是本领域技术人员需要努力攻克的技术难题。

发明内容

本发明所要解决的技术问题是提供一种孪生网络基于局部可信模板进行目标模板更新的视频跟踪方法,将目标模板更新分为两部分,既充分利用图像的历史信息,又摒弃噪音信息,提高视频跟踪的准确度。

为解决上述技术问题,本发明的技术方案是:设计一种孪生网络基于局部可信模板进行目标模板更新的视频跟踪方法,其特征在于:包括以下步骤:

(1)读取待跟踪的视频序列,确定视频序列中图像的总帧数K;

(2)获取步骤(1)视频序列中的初始帧图像,根据初始帧图像确定被跟踪目标,获得跟踪目标在初始帧图像中的目标框,以目标框中心为中心放大w倍,作为下一帧图像的搜索框;

(3)通过卷积神经网络分别提取步骤(1)视频序列中各帧图像的图像特征,构成各自图像的特征图,各帧图像的特征图构成各自图像的模板,由各帧图像的特征图对应生成各自的响应图,由响应图计算峰距率;其中,初始帧图像的特征图作为初始模板,并作为下一帧图像的目标模板;

(4)读取第t帧图像,t为大于1的自然数,根据第t帧的目标模板确定目标在本帧搜索框中的位置,得到目标在第t帧图像中目标框,完成第t帧图像的目标跟踪;第t帧图像的模板为当前模板,以目标框中心为中心放大w倍,作为下一帧图像的搜索框;

(5)判断步骤(4)中t是否大于m,m为设定的自然数,

t≤m时,将初始模板、累积模板与和当前模板输入深度学习模型进行模板更新,将更新的模板作为第t+1帧图像的目标模板;累积模板为初始模板与当前模板之间的模板;

t>m时,将m帧图像按峰距率由大到小排列,m帧图像的帧数所在区间为[t-m-1,t-1],选择前n帧图像对应的各自模板为局部最优模板,n为小于m的自然数,局部最优模板根据各自的自适应权重进行融合,得到自适应融合模板,将自适应融合模板与当前模板输入深度学习模型进行模板更新,将更新的模板作为第t+1帧图像的目标模板;

(6)步骤(5)后,计算t=t+1,判断t是否小于K,小于则重复步骤(4),否则完成目标跟踪。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东工商学院,未经山东工商学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202211646915.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top