[发明专利]基于双自注意力和深度学习的胸椎图像分割方法及装置在审

专利信息
申请号: 202310340824.2 申请日: 2023-03-31
公开(公告)号: CN116402780A 公开(公告)日: 2023-07-07
发明(设计)人: 张逸凌;刘星宇 申请(专利权)人: 北京长木谷医疗科技有限公司;张逸凌
主分类号: G06T7/00 分类号: G06T7/00;G06T7/11;G06T5/50
代理公司: 暂无信息 代理人: 暂无信息
地址: 100176 北京市大兴区北京经济技术开发区荣华南*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 注意力 深度 学习 胸椎 图像 分割 方法 装置
【权利要求书】:

1.一种基于双自注意力和深度学习的胸椎图像分割方法,其特征在于,包括:

获取待处理的医学图像数据集,所述医学图像数据集中的每张医学图像均包括有胸椎图像区域;

将所述待处理的医学图像数据集输入至深度学习网络模型中,基于所述深度学习网络模型编码层中的多个双自注意力模块,对不同尺寸的编码图像分别进行双自注意力机制特征提取,得到多张不同尺寸的编码特征图像;

基于所述深度学习网络模型解码层中的多个双自注意力模块,对特征拼接融合图像进行双自注意力机制特征提取,输出得到胸椎图像分割结果;

其中,所述特征拼接融合图像基于编码特征图像及与其对应的解码特征图像拼接操作得到。

2.根据权利要求1所述的基于双自注意力和深度学习的胸椎图像分割方法,其特征在于,所述深度学习网络模型包括四层网络结构,第一层网络结构为输入所述待处理的医学图像数据集的网络层,第一层网络结构至第四层网络结构的编码特征图像的尺寸依次减小;

所述第一层网络结构至所述第四层网络结构均设置有双自注意力模块;

在所述编码层中和所述解码层中,第四层网络结构中的双自注意力模块用于对第三层网络结构中经过下采样的编码特征图像进行双自注意力机制特征提取,得到第四编码特征图像,所述第四特征编码图像经过卷积操作后,得到第四解码特征图像;

第三层网络结构中的双自注意力模块用于对第二层网络结构中经过下采样的编码特征图像进行双自注意力机制特征提取,得到第三编码特征图像,以及对所述第三编码特征图像和所述第四编码特征图像经过上采样得到的解码图像进行拼接操作,得到第三解码特征图像;

第二层网络结构中的双自注意力模块用于对第一层网络结构中经过下采样的编码特征图像进行双自注意力机制特征提取,得到第二编码特征图像,以及对所述第二编码特征图像和所述第三编码特征图像经过上采样得到的解码图像进行拼接操作,得到第二解码特征图像;

第一层网络结构中的双自注意力模块用于对所述待处理的医学图像数据集中的医学编码图像进行双自注意力机制特征提取,得到第一编码特征图像,以及对所述第一编码特征图像和所述第二编码特征图像经过上采样得到的解码图像进行拼接操作,得到胸椎图像分割结果。

3.根据权利要求1所述的基于双自注意力和深度学习的胸椎图像分割方法,其特征在于,所述双自注意力模块包括:

第一分支结构和第二分支结构,所述第一分支结构用于对输入的图像进行宽度自注意力特征提取操作、相加add操作、归一化Norm操作以及FFN操作,得到第一特征图;所述第二分支机构用于对输入的图像进行高度自注意力特征提取操作、相加操作、归一化Norm操作以及FFN操作,得到第二特征图;

将所述第一特征图和所述第二特征图进行拼接Concat操作及Norm操作,得到第三特征图,所述第三特征图经过Norm操作以及FFN操作后所得的第四特征图与所述第三特征图进行add操作,输出得到第五特征图。

4.根据权利要求3所述的基于双自注意力和深度学习的胸椎图像分割方法,其特征在于,第一分支结构包括:宽度自注意力WSA单元、相加add单元、归一化Norm单元以及前馈神经网络FFN单元,所述WSA单元用于进行宽度自注意力特征提取操作,所述相加add单元用于进行add操作,所述归一化Norm单元用于进行归一化Norm操作,所述前馈神经网络FFN单元用于进行FFN操作;所述WSA单元通过add单元与所述Norm单元及所述FFN单元连接;

所述第二分支结构包括:高度自注意力HSA单元、相加add单元、归一化Norm单元以及前馈神经网络FFN单元;所述HSA单元通过add单元与所述Norm单元及所述FFN单元连接。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京长木谷医疗科技有限公司;张逸凌,未经北京长木谷医疗科技有限公司;张逸凌许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202310340824.2/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top