[发明专利]一种基于预测误差反馈的毫米波雷达交通目标聚类方法在审
申请号: | 202310486526.4 | 申请日: | 2023-05-04 |
公开(公告)号: | CN116580217A | 公开(公告)日: | 2023-08-11 |
发明(设计)人: | 谢宁波;覃静洁;廖可非;李沁璘;王海涛;纪元法;孙希延;廖桂生 | 申请(专利权)人: | 桂林电子科技大学 |
主分类号: | G06V10/762 | 分类号: | G06V10/762;G01S13/66 |
代理公司: | 桂林市华杰专利商标事务所有限责任公司 45112 | 代理人: | 杨雪梅 |
地址: | 541004 广西*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 预测 误差 反馈 毫米波 雷达 交通 目标 方法 | ||
本发明公开了一种基于预测误差反馈的毫米波雷达交通目标聚类方法,采用加权欧式距离,充分利用点云的空间及多普勒信息,进行DBSCAN聚类作为初步聚类结果;根据相关阈值判断是否满足单目标条件,充分利用时序特征,假设多目标与单目标两种情形进行连续5帧的卡尔曼滤波,利用预测误差反馈聚类,作为最终聚类结果。本发明方法利用连续帧之间大型目标预测状态与实际状态误差较小的特点,准确将点云成功聚类,避免了单帧聚类将同一目标分成多个簇的现象,提高了大型目标的点云聚类准确率。
技术领域
本发明属于雷达信号处理技术领域,具体涉及一种基于预测误差反馈的毫米波雷达点云目标聚类及跟踪领域技术。
背景技术
近年来,随着交通拥堵与交通事故频发,智能交通系统的市场需求日益扩增。目标跟踪是智能交通系统中的关键一环,在跟踪前,需要使用聚类技术将点云数据分割成不同的簇。聚类算法的不足可能会导致跟踪轨迹的分裂或合并,因此,有必要改进毫米波雷达的聚类方法以提升目标跟踪精度。
现有的针对毫米波雷达点云聚类的研究大多是针对单帧数据进行聚类算法的改进,并且一般的聚类算法只使用点云的空间特征进行聚类,没有充分利用点云的多普勒特征。在交通场景中,一个大型车辆目标由于自身反射点的不同,可能会出现同一目标只反射头部和尾部或者侧边等,并且同一目标在前后两帧的点云分布也会有一定差别。单帧数据聚类可能会产生聚类中断现象,导致单个目标被聚成多个簇,无法正确聚类分布稀疏的目标点云,最终的聚类结果较差,影响后续的跟踪。
发明内容
本发明所要解决的技术问题是毫米波雷达在探测大型目标时,产生的点云只有目标不同部位存在,传统聚类算法会将单个大型目标聚类为多个目标,而本发明能够正确将分散部位的点云聚类为一个目标。为此,本发明提供一种基于预测误差反馈的毫米波雷达交通目标聚类方法,采用加权欧式距离,充分利用点云的空间及多普勒信息,进行DBSCAN聚类作为初步聚类结果;根据相关阈值判断是否满足单目标条件,充分利用时序特征,假设多目标与单目标两种情形进行连续5帧的卡尔曼滤波,利用预测误差反馈聚类,作为最终聚类结果,可以有效提升稀疏分布点云的聚类准确率。
实现本发明目的的技术方案是:
一种基于预测误差反馈的毫米波雷达交通目标聚类方法,包括以下步骤:
步骤1,输入点云数据,使用轮廓系数作为优化算法的适应度函数,轮廓系数s(i)公式为:
公式中,a(i)表示类内距离,b(i)表示类间距离;
通过网格搜索算法,得到最优Eps以及加权欧式距离的最优权重w,加权欧式距离公式为:
公式中,x,y,v分别为点云相对雷达的横坐标、轴坐标和速度;
步骤2,使用加权欧式距离进行点云DBSCAN聚类,得到初步聚类结果;
步骤3,计算初步聚类后各点簇的质心Centroid以及平均速度计算公式为:
公式中,n为簇中点云个数;
步骤4,判断各点簇平均速度相差是否小于阈值α,若满足,继续判断点簇质心距离是否小于阈值β,若满足,继续步骤5;
否则,跳到步骤10;
步骤5,采用匀速(Constant Velocity,CV)模型,描述系统的状态向量F(k)为系统状态转移矩阵,I(k)为过程噪声分布矩阵,v(k)为过程噪声向量,目标状态公式为:
X(k+1)=F(k)X(k)+I(k)v(k)
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202310486526.4/2.html,转载请声明来源钻瓜专利网。
- 上一篇:基于机器学习的中医开方方法及系统
- 下一篇:一种自冷却型的数控机床加工中心