[发明专利]基于AI的报送数据校验方法、系统及存储介质在审

专利信息
申请号: 202310639793.0 申请日: 2023-05-31
公开(公告)号: CN116563028A 公开(公告)日: 2023-08-08
发明(设计)人: 曾铮;唐延华 申请(专利权)人: 盛宝金融科技有限公司
主分类号: G06Q40/04 分类号: G06Q40/04;G06Q40/08;G06Q10/0631;G06F18/214;G06F18/2135
代理公司: 重庆强大凯创专利代理事务所(普通合伙) 50217 代理人: 赵玉乾
地址: 401120 重庆*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 ai 报送 数据 校验 方法 系统 存储 介质
【说明书】:

发明涉及数据分析技术领域,具体为一种基于AI的报送数据校验方法、系统及存储介质,包括:S1、获取不同数据源的数据,对数据进行关联,建立数据之间的关联关系,并整合为数据集;S2、根据数据集中数据的关联关系,自动构造特征;S3、在若干业务风险识别模型中,将每个风险场景下的特征输入备选模型,筛选出表现最优的备选模型作为该风险场景下最优的预测模型,并在若干风险场景下采用其对应的预测模型进行异常分析,生成异常分析结果;S4、根据异常分析结果,进行异常提醒。本方案可以从数据中学习,自动发现数据异常,多维度探查隐藏风险模式,提高异常分析结果的准确性,降低对人工及其业务知识经验的依赖,降低合规成本。

技术领域

本发明涉及数据分析技术领域,具体为一种基于AI的报送数据校验方法、系统及存储介质。

背景技术

随着各监管机构对金融、保险等相关行业监督管理力度越来越大,相关行业需要通过银行、互联网金融及其他支付机构向各监管机构数据采集平台报送数据;报送的数据要保障其为合规数据,避免存在合规风险,因此报送数据的数据质量非常重要,需要进行报送数据校验,以及时发现数据异常和合规问题。

目前,数据报送的数据质量校验主要基于简单的规则模型,如根据监管政策构建相应的合规指标,再通过人工经验选择合适的规则模型,进行数据校验,这种方法能够发现基础的合规问题,但是对于一些隐藏的业务风险却难以识别,且依赖人工及其业务知识经验,合规成本高,并且规则模型具有滞后性,无法提前探查一些新的业务风险点,从而给金融机构带来潜在损失。

因此现在急需一种基于AI的报送数据校验方法、系统及存储介质,能自动发现数据异常,提高异常分析结果的准确性,降低对人工及其业务知识经验的依赖,以降低合规成本。

发明内容

本发明的目的之一在于提供一种基于AI的报送数据校验方法,能自动发现数据异常,提高异常分析结果的准确性,降低对人工及其业务知识经验的依赖,以降低合规成本。

本发明提供的基础方案一:基于AI的报送数据校验方法,包括如下内容:

S1、获取不同数据源的数据,对数据进行关联,建立数据之间的关联关系,并整合为数据集;

S2、根据数据集中数据的关联关系,自动构造特征;

S3、在若干业务风险识别模型中,将每个风险场景下的特征输入备选模型,筛选出表现最优的备选模型作为该风险场景下最优的预测模型,并在若干风险场景下采用其对应的预测模型进行异常分析,生成异常分析结果;

S4、根据异常分析结果,进行异常提醒。

进一步,所述数据源中的数据为各类表;数据,包括:对公信贷业务借据表、对私信贷业务借据表、信贷合同表、对公信贷分户账、对私信贷分户账、对公活期存款分户账、对私活期存款分户账、对公定期存款分户账、对私定期存款分户账、票据票面信息表、对公客户信息表、个人基础信息表、存款信息相关表、贷款信息相关表和客户基础信息相关表。

进一步,所述特征,包括:基本特征和深度特征;

所述S2,包括:

各业务风险识别模型中对应的风险场景下设置对应的数据为主表;

根据数据集中数据的关联关系,通过定义的基础特征算子,自动构造基本特征;其中基本特征,包括:聚合特征和转换特征;

根据基础特征算子,通过定义的深度特征算子,构造深度特征;其中深度特征,包括:深度聚合特征和深度转换特征。

进一步,所述根据基础特征算子,构造深度特征,包括:

设置指定深度;指定深度为主表与具有关联关系的表之间的关联度;

根据指定深度,将与主表之间的关联度符合指定深度的表纳入到深度特征的构建中,构造深度特征。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于盛宝金融科技有限公司,未经盛宝金融科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202310639793.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top