[发明专利]基于多光谱图像的纹理分析鉴别不同品种绿茶的方法和装置无效
申请号: | 200710069113.7 | 申请日: | 2007-05-29 |
公开(公告)号: | CN101059425A | 公开(公告)日: | 2007-10-24 |
发明(设计)人: | 何勇;李晓丽;裘正军;陆江峰;何超 | 申请(专利权)人: | 浙江大学 |
主分类号: | G01N21/27 | 分类号: | G01N21/27;G01N21/84;G01N33/00 |
代理公司: | 杭州求是专利事务所有限公司 | 代理人: | 林怀禹 |
地址: | 310027浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多光谱图像的纹理分析鉴别不同品种绿茶的方法和装置。首先通过3CCD摄像机同时获得茶叶样本的三个通道图像,分析不同品种绿茶在各个通道的图像的纹理特性,然后对于预处理后的茶叶图像运用纹理统计分析法或频谱分析法等提取纹理特征参数并进行参数优化。对于只能反映不同品种茶叶共性,不能反映不同品种茶叶之间差别的某些参数剔出。经过参数相关性分析,主成分分析,显著性分析等方法得到的与不同品种茶叶密切相关的纹理特征参数。经优化后的特征参数输入分类器建立定量化的鉴别模型。再用已经建好鉴别模型来鉴别待预测样本的品种。本发明主要用于快速、准确、非破坏性、在线鉴别绿茶品种。 | ||
搜索关键词: | 基于 光谱 图像 纹理 分析 鉴别 不同 品种 绿茶 方法 装置 | ||
【主权项】:
1、一种基于多光谱图像的纹理分析鉴别不同品种绿茶的方法,其特征在于首先建立绿茶品种鉴别的校正模型,然后在校正模型的基础上对预测样本的品种进行鉴别;该方法的步骤如下:一、首先建立绿茶品种鉴别的校正模型:1)获取图像:把绿茶校正样本集送入图像采集的硬件系统,3CCD多光谱成像仪把采集到的样本的图像送到计算机;2)图像预处理:对送入计算机的图像,首先诊断是否清晰,对于不清晰的图像要对图像进行校正和信息融合处理,来获得高质量的清晰的茶叶样本的图像;3)提取图像的纹理特征:由于茶叶在线检测过程中是堆积状的,而且茶叶的纹理是自然纹理,所以运用纹理统计方法来提取纹理特征;或者结合频谱纹理统计方法来提取纹理特征;4)特征参数的优化和筛选:用各种纹理描述方法得到的纹理特征参数,并不是都能对样本品种起到区分作用,所以必须对特征参数进行优化和筛选;通过参数之间的相关性分析来消除参数间的信息冗余、通过各个品种样本的各个参数的范围和参数的标准偏差剔出对品种鉴别不起作用或者起反作用的特征参数、通过主成分分析或者显著性分析来寻找对不同品种绿茶纹理识别起重要作用的参数;5)建立品种鉴别的校正模型:把优化后的特征参数输入模式识别分类器来建立校正模型;模型识别算法是神经网络法、多类判别分析、最小聚类分类器或支持向量机;二、在校正模型的基础上对待预测样本的品种进行鉴别:检验校正模型对预测样本的鉴别精度和稳定性:用预测样本来检验模型,先获取预测样本的多光谱图像、图像预处理、提取预测样本的图像的纹理特征参数与校正样本集优化后输入标准鉴别模型的纹理参数一样的、把特征参数输入模型,即可得出预测样本的品种。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/200710069113.7/,转载请声明来源钻瓜专利网。
- 上一篇:X射线检测设备和X射线成像设备
- 下一篇:人工湿地生活污水处理方法及系统
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序