[发明专利]基于NJW谱聚类标记的图像分割方法有效
申请号: | 201110346346.3 | 申请日: | 2011-11-04 |
公开(公告)号: | CN102346851A | 公开(公告)日: | 2012-02-08 |
发明(设计)人: | 缑水平;焦李成;杨静瑜;李阳阳;张佳;徐聪;杨淑媛;庄雄 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06K9/46 | 分类号: | G06K9/46;G06K9/62 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 王品华;朱红星 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于NJW谱聚类标记的图像分割方法,主要解决谱聚类方法稳定性差的问题。其实现过程是:(1)对待分割图像提取灰度共生特征,并进行归一化处理以去除数据间量级影响;(2)用k-means算法将特征数据聚为m类,并以与聚类中心最近邻的特征数据作为采样点,得采样子集S;(3)利用NJW谱聚类算法,对采样子集S进行聚类,得到采样子集S的标签;(4)对采样子集S进行学习,训练一个支撑矢量机SVM分类器;(5)用所得的SVM分类器对所有特征数据进行测试,得到最终的图像分割结果。本发明与现有的技术相比图像分割结果稳定、准确度高,可用于目标检测和目标识别。 | ||
搜索关键词: | 基于 njw 谱聚类 标记 图像 分割 方法 | ||
【主权项】:
一种基于NJW谱聚类标记的图像分割方法,包括如下步骤:(1)使用灰度共生矩阵对待分割的图像进行特征提取,并将提取的特征数据归一化到[0,1]之间,以去除数据间量级的影响;(2)用k means算法将归一化后的特征数据聚为m类,并将与聚类中心最近邻的特征数据作为采样点得到采样子集S,m取100;(3)利用NJW谱聚类算法,对采样子集S进行聚类,得到采样子集S的标签;(4)对采样子集S和对应的标签进行学习,训练一个支撑矢量机SVM分类器;(5)用所得的SVM分类器对所有特征数据进行测试,得到最终的图像分割结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201110346346.3/,转载请声明来源钻瓜专利网。