[发明专利]一种基于机器视觉的人体跌倒检测方法无效

专利信息
申请号: 201210167580.4 申请日: 2012-05-25
公开(公告)号: CN102722721A 公开(公告)日: 2012-10-10
发明(设计)人: 马昕;王海波;周民刚;李贻斌 申请(专利权)人: 山东大学
主分类号: G06K9/62 分类号: G06K9/62;G06T7/00
代理公司: 济南金迪知识产权代理有限公司 37219 代理人: 宁钦亮
地址: 250100 山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出一种基于机器视觉的人体跌倒检测方法,该方法基于以下条件:所有的检测对象都是人,而且在室内环境;所有人的活动范围能够用深度摄像机捕捉到人体;具体包括以下步骤:(1)利用深度摄像机进行图像采集;(2)通过新得到的图像减去背景提取出图像中的前景;(3)利用二值图像轮廓提取算法获得前景轮廓;(4)对前景轮廓与不同尺度的高斯函数进行卷积计算,将轮廓图像映射到曲率尺度空间形成曲率尺度空间CSS图像,提取CSS图的峰值点,不同尺度下的峰值点便构成了基于曲率尺度特征的视频词包;(5)用得到的视频词包训练极限学习机分类器。本发明能够在训练样本很少的情况下,以较少的训练时间,获得较为精确的跌倒检测结果。
搜索关键词: 一种 基于 机器 视觉 人体 跌倒 检测 方法
【主权项】:
1.一种基于机器视觉的跌倒检测方法,其特征是,基于以下条件:所有的检测对象都是人,而且在室内环境;所有人的活动范围有限,能够用深度摄像机捕捉到人体;具体包括以下步骤:(1)利用深度摄像机进行图像采集;(2)利用高斯混合模型对背景建模,通过新得到的图像减去背景提取出图像中的前景;(3)利用二值图像轮廓提取算法获得前景轮廓;(4)前景轮廓与不同尺度的高斯函数进行卷积计算,高斯函数将高斯函数的标准差σ定义为尺度,并且由小到大变化,取均值μ=0,将轮廓图像映射到曲率尺度空间形成CSS图,然后提取CSS图的峰值点,该峰值点作为轮廓图像特征,不同尺度下的峰值点便构成了基于曲率尺度特征的视频词包;(5)用得到的基于曲率尺度空间特征的视频词包训练极限学习机分类器;利用极限学习机分类器进行人体跌倒检测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201210167580.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top