[发明专利]一种基于机器视觉的人体跌倒检测方法无效
申请号: | 201210167580.4 | 申请日: | 2012-05-25 |
公开(公告)号: | CN102722721A | 公开(公告)日: | 2012-10-10 |
发明(设计)人: | 马昕;王海波;周民刚;李贻斌 | 申请(专利权)人: | 山东大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06T7/00 |
代理公司: | 济南金迪知识产权代理有限公司 37219 | 代理人: | 宁钦亮 |
地址: | 250100 山*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种基于机器视觉的人体跌倒检测方法,该方法基于以下条件:所有的检测对象都是人,而且在室内环境;所有人的活动范围能够用深度摄像机捕捉到人体;具体包括以下步骤:(1)利用深度摄像机进行图像采集;(2)通过新得到的图像减去背景提取出图像中的前景;(3)利用二值图像轮廓提取算法获得前景轮廓;(4)对前景轮廓与不同尺度的高斯函数进行卷积计算,将轮廓图像映射到曲率尺度空间形成曲率尺度空间CSS图像,提取CSS图的峰值点,不同尺度下的峰值点便构成了基于曲率尺度特征的视频词包;(5)用得到的视频词包训练极限学习机分类器。本发明能够在训练样本很少的情况下,以较少的训练时间,获得较为精确的跌倒检测结果。 | ||
搜索关键词: | 一种 基于 机器 视觉 人体 跌倒 检测 方法 | ||
【主权项】:
1.一种基于机器视觉的跌倒检测方法,其特征是,基于以下条件:所有的检测对象都是人,而且在室内环境;所有人的活动范围有限,能够用深度摄像机捕捉到人体;具体包括以下步骤:(1)利用深度摄像机进行图像采集;(2)利用高斯混合模型对背景建模,通过新得到的图像减去背景提取出图像中的前景;(3)利用二值图像轮廓提取算法获得前景轮廓;(4)前景轮廓与不同尺度的高斯函数进行卷积计算,高斯函数
将高斯函数的标准差σ定义为尺度,并且由小到大变化,取均值μ=0,将轮廓图像映射到曲率尺度空间形成CSS图,然后提取CSS图的峰值点,该峰值点作为轮廓图像特征,不同尺度下的峰值点便构成了基于曲率尺度特征的视频词包;(5)用得到的基于曲率尺度空间特征的视频词包训练极限学习机分类器;利用极限学习机分类器进行人体跌倒检测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201210167580.4/,转载请声明来源钻瓜专利网。