[发明专利]一种可发电风资源的预测方法有效

专利信息
申请号: 201310278836.3 申请日: 2013-07-04
公开(公告)号: CN103489037A 公开(公告)日: 2014-01-01
发明(设计)人: 乔颖;鲁宗相;汪宁渤;李剑楠;徐飞;马彦宏;赵龙;王定美;路亮 申请(专利权)人: 清华大学;国家电网公司;甘肃省电力公司;甘肃省电力公司风电技术中心
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06
代理公司: 深圳市鼎言知识产权代理有限公司 44311 代理人: 哈达
地址: 100084 北京*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种可发电风资源的预测方法,包括以下步骤:以复相关系数为筛选依据,通过遍历所有可用测风序列的各种组合,以计算可用测风序列与平均风速序列的复相关系数,按照最大复相关系数选择模型输入,实现对可用测风序列的初步筛选,得到多维的有效测风序列;以典型相关分析方法为理论基础,对多维的有效测风序列进一步提取,将多维的测风序列降至一维;以及以降维后的测风序列作为模型输入,以风场平均风速作为模型输出,采用基于遗传算法的BP神经网络模型训练得到映射模型,最终将该映射模型应用于实时输入测风序列,实现可发电风资源的预测。本发明能够进一步提高可发电风资源的预估精度。
搜索关键词: 一种 发电 资源 预测 方法
【主权项】:
一种可发电风资源的预测方法,包括以下步骤:以复相关系数为筛选依据,通过遍历所有可用测风序列的各种组合,以计算可用测风序列与平均风速序列的复相关系数,按照最大复相关系数选择模型输入,实现对可用测风序列的初步筛选,得到多维的有效测风序列;以典型相关分析方法为理论基础,对多维的有效测风序列进一步提取,将多维的测风序列降至一维;以及以降维后的测风序列作为模型输入,以风场平均风速作为模型输出,采用基于遗传算法的BP神经网络模型训练得到映射模型,最终将该映射模型应用于实时输入测风序列,实现可发电风资源的预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学;国家电网公司;甘肃省电力公司;甘肃省电力公司风电技术中心,未经清华大学;国家电网公司;甘肃省电力公司;甘肃省电力公司风电技术中心许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310278836.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top