[发明专利]一种基于支持张量数据描述的离群数据检测方法在审

专利信息
申请号: 201310558174.5 申请日: 2013-11-11
公开(公告)号: CN103577589A 公开(公告)日: 2014-02-12
发明(设计)人: 罗利佳;包士毅;高增梁 申请(专利权)人: 浙江工业大学
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310014 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于支持张量数据描述的离群数据检测方法,包括以下步骤:1)获取由n个二阶张量数据对象Xi构成的数据集X={X1,X2,…,Xi,…,Xn};2)选取惩罚因子C,建立优化问题;3)利用拉格朗日乘子法将优化问题转化为其对偶问题,求解得到最优解所对应的一组拉格朗日乘子αi,然后分别计算超球体的中心A和半径R;4)根据每个数据对象所对应的拉格朗日乘子αi的取值判断各数据对象所处的位置,将位于超球体边界外的数据对象标记为离群点。本发明针对二阶张量数据的离群检测问题,提供了一种检测效率较高、可避免信息损失、通用性良好的基于支持张量数据描述的离群数据检测方法。
搜索关键词: 一种 基于 支持 张量 数据 描述 离群 检测 方法
【主权项】:
一种基于支持张量数据描述的离群数据检测方法,其特征在于:包括以下步骤:1)获取由n个二阶张量数据对象Xi构成的数据集X={X1,X2,…,Xi,…,Xn};2)选取惩罚因子C,建立如下优化问题: min R , A , ξ R 2 + C Σ i ξ i s . t . | | X i - A | | 2 R + ξ i , ξ i 0 - - - ( 1 ) 式中‖·‖表示矩阵的Frobenius范数,A和R分别是超球体的中心和半径,ξi是松弛因子;3)利用拉格朗日乘子法将优化问题(1)转化为其对偶问题,求解得到最优解所对应的一组拉格朗日乘子αi,然后分别计算超球体的中心A和半径R,具体过程如下:首先利用拉格朗日乘子法得到优化问题(1)的拉格朗日函数L(·):L(R,A,αi,γi,ξi)=R2+CΣiξi‑Σiαi{R2+ξi‑‖Xi‑A‖2}‑Σiγiξi   (2)式中αi≥0和γi≥0都是拉格朗日乘子,令L(·)对R、A和ξi的偏导为0,得: L R = 0 : Σ i α i = 1 - - - ( 3 ) L A = 0 : A = Σ i α i X i - - - ( 4 ) L ξ i = 0 : C - α i - γ i = 0 - - - ( 5 ) 代入式(2),将求解式(2)相对于A、R和ξi的最小化问题转化为求解其对偶最大化问题,有: L = Σ i α i tr ( X i X i T ) - Σ ij α i α j tr ( X i X j T ) s . t . Σ i α i = 1,0 α i C 求解该问题可得到最优解所对应的一组拉格朗日乘子αi,然后,利用如下两式分别计算超球体的球心和半径:A=ΣiαiXi   (6) R 2 = tr ( X k X k T ) - 2 Σ i α i tr ( X k X i T ) + Σ ij α i α j tr ( X i X j T ) - - - ( 7 ) 其中Xk是对应于0<αi
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310558174.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

tel code back_top