[发明专利]一种基于Android平台的植物叶片识别方法在审
申请号: | 201310670473.8 | 申请日: | 2013-12-10 |
公开(公告)号: | CN103714317A | 公开(公告)日: | 2014-04-09 |
发明(设计)人: | 黄德双;叶爽;甘勇 | 申请(专利权)人: | 同济大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/64 |
代理公司: | 上海科盛知识产权代理有限公司 31225 | 代理人: | 王小荣 |
地址: | 200092 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于Android平台的植物叶片识别方法,包括(1)对待检测植物图像进行感兴区裁剪,选择单机识别则执行(2),选择联网识别则执行(4);(2)联合K最邻近结点分类器和支持向量机,利用Android平台的数据库对待检测植物图像进行分类识别;(3)求取待检测植物图像的特征描述向量与数据库中所有植物图像的特征描述向量的欧式距离,取欧氏距离最小的前五种植物种类,判断得到的目标植物种类是否在五种植物种类里,是则执行(5),否则执行(4);(4)通过HTTP协议将感兴区图像发送到服务器端。与现有技术相比,本发明图像处理实时高效,利用NDK以及JNI技术显著提高了识别分类的准确度与速度。 | ||
搜索关键词: | 一种 基于 android 平台 植物 叶片 识别 方法 | ||
【主权项】:
一种基于Android平台的植物叶片识别方法,其特征在于,包括以下步骤:(1)利用Android平台的图像处理API,对待检测植物图像进行感兴区裁剪,对裁剪后的感兴区图像选择单机识别则执行步骤(2),选择联网识别则执行步骤(4);(2)计算感兴区图像的特征梯度直方图特征向量,联合K最邻近结点分类器和支持向量机,利用Android平台的数据库对待检测植物图像进行分类识别,得到待检测植物所属的目标植物种类;(3)求取待检测植物图像的特征描述向量与Android平台的数据库中所有植物图像的特征描述向量的欧式距离,取欧氏距离最小的前五种植物种类,判断步骤(2)得到的目标植物种类是否在欧式距离最小的五种植物种类里,是则执行步骤(5),否则执行步骤(4);(4)通过HTTP协议将感兴区图像发送到服务器端,服务器端用servlet进行接收,之后对接收的图像提取特征梯度直方图特征向量,接着送入支持向量机进行分类识别,并将识别结果返回Android平台;(5)显示待检测植物的根、茎、叶、花、果实及种子图片,以及该种植物的科普介绍信息内容。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310670473.8/,转载请声明来源钻瓜专利网。
- 上一篇:一种家用水二次利用装置
- 下一篇:用于自来水管网的末端增压装置