[发明专利]一种非高斯非稳态噪声建模方法有效
申请号: | 201410244453.9 | 申请日: | 2014-06-04 |
公开(公告)号: | CN104021289B | 公开(公告)日: | 2017-04-26 |
发明(设计)人: | 杜航原;张虎;白亮;王文剑 | 申请(专利权)人: | 山西大学 |
主分类号: | G06F19/00 | 分类号: | G06F19/00 |
代理公司: | 山西五维专利事务所(有限公司)14105 | 代理人: | 张福增 |
地址: | 030006 山*** | 国省代码: | 山西;14 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种非稳态非高斯观测噪声建模方法,用于目标跟踪系统的滤波器状态估计过程中对观测噪声的处理。本发明的主要特征在于利用高斯混合模型对非稳态非高斯观测噪声进行近似,混合模型中高斯成员的分布参数融合在滤波器的迭代过程中进行计算和更新,能针对观测噪声统计特性的变化在线调节。在滤波器的每一次迭代处理中,高斯成员的分布参数分为先验参数和后验参数。先验参数由上一次迭代获得的参数估计结果进行计算,后验参数通过极大似然估计求取。利用后验分布参数构建高斯成员分布,并组成观测噪声的高斯混合近似模型,该模型能够保证滤波器精度维持在较高水平。本方法对于观测噪声的建模具有较高精度和较强鲁棒性。 | ||
搜索关键词: | 一种 非高斯非 稳态 噪声 建模 方法 | ||
【主权项】:
一种非高斯非稳态噪声建模方法,其特征在于,包括以下步骤:步骤1、利用高斯混合模型对任一k时刻待建模观测噪声进行建模,将观测噪声的概率密度函数pi(vk)近似为一系列服从高斯分布的成员密度函数;p(vk)=Σi=1Mαi,kpi(vk)=Σi=1Mαi,kN(vk;μi,k,σi,k2)]]>其中M为混合模型中高斯成员的数量,pi(vk)表示混合模型中第i个高斯成员的概率密度函数,μi,k、和αi,k分别为pi(vk)对应的期望、方差以及权值,αi,k满足步骤2、若k=0,对高斯混合模型中的高斯成员密度函数进行先验分布参数初始化,设定每个高斯成员的分布权值为αi,0=1/M,期望为μi,0=0,设定为传感器的先验观测误差协方差;若k>0,则先验分布参数由k‑1时刻迭代获得的后验分布参数计算,方法如下:先验权值为:先验期望为:先验方差为:σi,k-2=σi,k-12]]>步骤3、对当前时刻噪声进行采样,形成包含N个噪声采样的采样集合,其中第j个噪声采样表示为其中j的取值范围是j=1,…,N;步骤4、计算每个高斯成员关于噪声采样的后验条件概率,方法如下:P{pi(vkj)|vkj}=P{pi(vkj),vkj}P{vkj}=p{vkj|pi(vkj)}P{pi(vkj)}Σi=1Mp{vkj|pi(vkj)}P{pi(vkj)}=pi{vkj|μi,k,σi,k2}αi,kΣi=1Mpi{vkj|μi,k,σi,k2}αi,k]]>步骤5、建立高斯混合模型的对数似然函数;步骤6、引入拉格朗日乘子λ,并由得到拉格朗日函数:Lk=Σj=1NlnΣi=1Mαi,kpi{vkj|μi,k,σi,k2}-λ(Σi=1Mαi,k-1)]]>步骤7、通过极大似然估计分别求得混合模型中每个高斯成员的后验分布参数,包括以下步骤:1)通过令对数似然函数的拉格朗日函数关于高斯成员期望的偏导数为0,求得高斯成员的后验期望;2)通过令拉格朗日函数关于高斯成员标准差的偏导数为0,求得高斯成员的后验方差;3)通过令拉格朗日函数关于高斯成员分布权值的偏导数为0,求得高斯成员的后验权值;步骤8、将步骤7获得的高斯成员后验权值、期望及方差代入式构建当前观测噪声的概率密度函数;步骤9、如果滤波器迭代完成,则由滤波器输出状态估计结果,如果迭代未完成,则返回步骤2。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山西大学,未经山西大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410244453.9/,转载请声明来源钻瓜专利网。
- 上一篇:车床自动接料机构
- 下一篇:一种压纱型双贾卡经编机
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用