[发明专利]基于非凸高阶全变差模型的SplitBregman权值迭代图像盲复原方法有效

专利信息
申请号: 201410389135.1 申请日: 2014-08-08
公开(公告)号: CN104134196B 公开(公告)日: 2017-02-15
发明(设计)人: 李伟红;许尚文;龚卫国 申请(专利权)人: 重庆大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 重庆华科专利事务所50123 代理人: 康海燕
地址: 400030 *** 国省代码: 重庆;85
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明是一种基于非凸高阶全变差模型的Split Bregman权值迭代图像盲复原方法,属于图像处理技术领域。其核心是通过引入满足超拉普拉斯模型的图像边缘稀疏先验信息,结合能够产生分段线性解的高阶滤波器组,形成非凸高阶全变差正则化盲复原代价函数。然后提出权值迭代策略,将该代价函数最小化问题转化为权值更新后近似的凸性代价函数最小化问题。然后利用算子分裂技术将最小化问题转化为新的约束求解问题,通过加入惩罚项的方法将约束求解问题转化为分裂的代价函数,进而使用Split Bregman迭代求解框架对分裂的代价函数进行求解。实验表明本发明方法能够有效、快速地复原图像,克服传统全变差正则化盲复原方法产生阶梯效应的缺点,同时针对人工退化图像和真实退化图像都有很好的复原效果。
搜索关键词: 基于 非凸高阶全变差 模型 splitbregman 权值迭代 图像 复原 方法
【主权项】:
一种基于非凸高阶全变差模型的Split Bregman权值迭代图像盲复原方法,该方法包括以下步骤:(1)引入满足超拉普拉斯模型的图像边缘稀疏先验信息,结合使用能够产生分段线性解的高阶滤波器组,形成非凸高阶全变差正则化盲复原模型,即具有非凸性质的代价函数;(2)使用权值迭代策略,将步骤(1)中的非凸性代价函数最小化问题转化为权值更新后近似的凸性代价函数最小化问题;(3)采用算子替换的方法对步骤(2)中产生的近似凸性代价函数中的二阶微分算子用b替换:转化为约束优化问题,然后引入惩罚项对进行惩罚,这样就转化为分裂的最小化代价函数;(4)对步骤(3)中产生的分裂的最小化代价函数交替使用直接求偏微分后置为零的方法求解点扩散函数问题;通过Split Bregman迭代方法求解图像问题,经过迭代最终复原出清晰图像;步骤(1)的非凸高阶全变差正则化盲复原模型定义如下:上式中,u为原清晰图像,k为点扩散函数,f为已知的退化图像,p为常数,介于0.5至0.8之间,用来控制图像边缘先验的稀疏性;λ1和λ2为两个大于0的正则化参数,控制图像和点扩散函数的正则化程度;为H1范数,和分别代表图像k在水平方向和垂直方向的一阶微分,∑表示所有像素相加;为图像的高阶全变差,和分别代表图像u在水平方向、正对角方向、负对角方向和垂直方向的二阶微分;假设图像为周期边界条件,像素为N×N,在位置(i,j)处的定义分别如下:
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201410389135.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top