[发明专利]自适应冗余字典压缩感知的高光谱图像压缩算法研究在审

专利信息
申请号: 201510846662.5 申请日: 2015-11-27
公开(公告)号: CN105354867A 公开(公告)日: 2016-02-24
发明(设计)人: 赵学军;于凯敏;吕晓丽;王晓娟 申请(专利权)人: 中国矿业大学(北京)
主分类号: G06T9/00 分类号: G06T9/00;G06T5/00
代理公司: 暂无信息 代理人: 暂无信息
地址: 100083 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于计算机数字图像处理领域,为了解决传统高光谱图像压缩算法存在的计算量大、压缩时间长等普遍问题。自适应冗余字典压缩感知算法考虑了高光谱图像的谱间相关性,自适应分组,由组中心训练字典,其余波段用该字典结合压缩感知所得的图像恢复原图。在压缩过程中,要设计合理的观测矩阵,使得观测后的结果信息损失最小。在传输过程中,只需传输少量信息。在图像复原过程中,选择合适的字典,采用优化算法最大程度的恢复高光谱图像数据。
搜索关键词: 自适应 冗余 字典 压缩 感知 光谱 图像 算法 研究
【主权项】:
自适应冗余字典压缩感知,该方法建立在稀疏分解算法的理论基础上,其特征在于,基于冗余字典的稀疏表示方式能够以较少的数据量,较好地描述高光谱图像中的特征信息,从而减少压缩时间,在压缩过程中,依次含有以下步骤:步骤(A1):对原始高光谱图像的谱间相关性进行分析,对于谱间相关性较好的高光谱图像,采用自适应波段合并降维进行高光谱图像的压缩;步骤(A2):自适应冗余字典压缩感知算法首先要根据波段间的相关系数,进行分组;步骤(A3):每一组是以第一波段g1为中心,其余波段gi与中心的相关系数在一定的范围ε内,即符合式:步骤(A4):用观测矩阵A进行观测,得到采样结果;步骤(A5):信号恢复,找到适合的字典,即稀疏基ψ,采用优化算法恢复原始图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国矿业大学(北京),未经中国矿业大学(北京)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510846662.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top